㈠ 求用傅里葉變換分析股票價格周期的matlab程序
這個有周期?
㈡ 傅里葉變換的相關
傅里葉是一位法國數學家和物理學家的名字,英語原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier對熱傳遞很感興趣,於1807年在法國科學學會上發表了一篇論文,運用正弦曲線來描述溫度分布,論文里有個在當時具有爭議性的決斷:任何連續周期信號可以由一組適當的正弦曲線組合而成。當時審查這個論文的人,其中有兩位是歷史上著名的數學家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),當拉普拉斯和其它審查者投票通過並要發表這個論文時,拉格朗日堅決反對,在他此後生命的六年中,拉格朗日堅持認為傅里葉的方法無法表示帶有稜角的信號,如在方波中出現非連續變化斜率。法國科學學會屈服於拉格朗日的威望,拒絕了傅里葉的工作,幸運的是,傅里葉還有其它事情可忙,他參加了政治運動,隨拿破崙遠征埃及,法國大革命後因會被推上斷頭台而一直在逃避。直到拉格朗日死後15年這個論文才被發表出來。
拉格朗日是對的:正弦曲線無法組合成一個帶有稜角的信號。但是,我們可以用正弦曲線來非常逼近地表示它,逼近到兩種表示方法不存在能量差別,基於此,傅里葉是對的。
用正弦曲線來代替原來的曲線而不用方波或三角波來表示的原因在於,分解信號的方法是無窮的,但分解信號的目的是為了更加簡單地處理原來的信號。用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。一個正弦曲線信號輸入後,輸出的仍是正弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。且只有正弦曲線才擁有這樣的性質,正因如此我們才不用方波或三角波來表示。
為什麼偏偏選擇三角函數而不用其他函數進行分解?我們從物理系統的特徵信號角度來解釋。我們知道:大自然中很多現象可以抽象成一個線性時不變系統來研究,無論你用微分方程還是傳遞函數或者狀態空間描述。線性時不變系統可以這樣理解:輸入輸出信號滿足線性關系,而且系統參數不隨時間變換。對於大自然界的很多系統,一個正弦曲線信號輸入後,輸出的仍是正弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。也就是說正弦信號是系統的特徵向量!當然,指數信號也是系統的特徵向量,表示能量的衰減或積聚。自然界的衰減或者擴散現象大多是指數形式的,或者既有波動又有指數衰減(復指數 形式),因此具有特徵的基函數就由三角函數變成復指數函數。但是,如果輸入是方波、三角波或者其他什麼波形,那輸出就不一定是什麼樣子了。所以,除了指數信號和正弦信號以外的其他波形都不是線性系統的特徵信號。
用正弦曲線來代替原來的曲線而不用方波或三角波或者其他什麼函數來表示的原因在於:正弦信號恰好是很多線性時不變系統的特徵向量。於是就有了傅里葉變換。對於更一般的線性時不變系統,復指數信號(表示耗散或衰減)是系統的「特徵向量」。於是就有了拉普拉斯變換。z變換也是同樣的道理,這時是離散系統的「特徵向量」。這里沒有區分特徵函數和特徵向量的概念,主要想表達二者的思想是相同的,只不過一個是有限維向量,一個是無限維函數。
傅里葉級數和傅里葉變換其實就是我們之前討論的特徵值與特徵向量的問題。分解信號的方法是無窮的,但分解信號的目的是為了更加簡單地處理原來的信號。這樣,用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。且只有正弦曲線才擁有這樣的性質。
這也解釋了為什麼我們一碰到信號就想方設法的把它表示成正弦量或者復指數量的形式;為什麼方波或者三角波如此「簡單」,我們非要展開的如此「麻煩」;為什麼對於一個沒有什麼規律的「非周期」信號,我們都絞盡腦汁的用正弦量展開。就因為正弦量(或復指數)是特徵向量。 什麼是時域?從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。
什麼是頻域?頻域(frequency domain)是描述信號在頻率方面特性時用到的一種坐標系。用線性代數的語言就是裝著正弦函數的空間。頻域最重要的性質是:它不是真實的,而是一個數學構造。頻域是一個遵循特定規則的數學范疇。正弦波是頻域中唯一存在的波形,這是頻域中最重要的規則,即正弦波是對頻域的描述,因為時域中的任何波形都可用正弦波合成。
對於一個信號來說,信號強度隨時間的變化規律就是時域特性,信號是由哪些單一頻率的信號合成的就是頻域特性。
時域分析與頻域分析是對信號的兩個觀察面。時域分析是以時間軸為坐標表示動態信號的關系;頻域分析是把信號變為以頻率軸為坐標表示出來。一般來說,時域的表示較為形象與直觀,頻域分析則更為簡練,剖析問題更為深刻和方便。目前,信號分析的趨勢是從時域向頻域發展。然而,它們是互相聯系,缺一不可,相輔相成的。貫穿時域與頻域的方法之一,就是傳說中的傅里葉分析。傅里葉分析可分為傅里葉級數(Fourier Serie)和傅里葉變換(Fourier Transformation)。 根據原信號的不同類型,我們可以把傅里葉變換分為四種類別:
1非周期性連續信號傅里葉變換(Fourier Transform)
2周期性連續信號傅里葉級數(Fourier Series)
3非周期性離散信號離散時域傅里葉變換(Discrete Time Fourier Transform)
4周期性離散信號離散傅里葉變換(Discrete Fourier Transform)
下圖是四種原信號圖例:
這四種傅里葉變換都是針對正無窮大和負無窮大的信號,即信號的的長度是無窮大的,我們知道這對於計算機處理來說是不可能的,那麼有沒有針對長度有限的傅里葉變換呢?沒有。因為正餘弦波被定義成從負無窮大到正無窮大,我們無法把一個長度無限的信號組合成長度有限的信號。面對這種困難,方法是把長度有限的信號表示成長度無限的信號,可以把信號無限地從左右進行延伸,延伸的部分用零來表示,這樣,這個信號就可以被看成是非周期性離解信號,我們就可以用到離散時域傅里葉變換的方法。還有,也可以把信號用復制的方法進行延伸,這樣信號就變成了周期性離散信號,這時我們就可以用離散傅里葉變換方法進行變換。這里我們要學的是離散信號,對於連續信號我們不作討論,因為計算機只能處理離散的數值信號,我們的最終目的是運用計算機來處理信號的。
但是對於非周期性的信號,我們需要用無窮多不同頻率的正弦曲線來表示,這對於計算機來說是不可能實現的。所以對於離散信號的變換只有離散傅里葉變換(DFT)才能被適用,對於計算機來說只有離散的和有限長度的數據才能被處理,對於其它的變換類型只有在數學演算中才能用到,在計算機面前我們只能用DFT方法,後面我們要理解的也正是DFT方法。這里要理解的是我們使用周期性的信號目的是為了能夠用數學方法來解決問題,至於考慮周期性信號是從哪裡得到或怎樣得到是無意義的。
每種傅里葉變換都分成實數和復數兩種方法,對於實數方法是最好理解的,但是復數方法就相對復雜許多了,需要懂得有關復數的理論知識,不過,如果理解了實數離散傅里葉變換(real DFT),再去理解復數傅里葉就更容易了,所以我們先把復數的傅里葉放到一邊去,先來理解實數傅里葉變換,在後面我們會先講講關於復數的基本理論,然後在理解了實數傅里葉變換的基礎上再來理解復數傅里葉變換。
如 上圖所示,實信號四種變換在時域和頻域的表現形式。
還有,這里我們所要說的變換(transform)雖然是數學意義上的變換,但跟函數變換是不同的,函數變換是符合一一映射准則的,對於離散數字信號處理(DSP),有許多的變換:傅里葉變換、拉普拉斯變換、Z變換、希爾伯特變換、離散餘弦變換等,這些都擴展了函數變換的定義,允許輸入和輸出有多種的值,簡單地說變換就是把一堆的數據變成另一堆的數據的方法。 傅里葉變換是數字信號處理領域一種很重要的演算法。要知道傅里葉變換演算法的意義,首先要了解傅里葉原理的意義。傅里葉原理表明:任何連續測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據該原理創立的傅里葉變換演算法利用直接測量到的原始信號,以累加方式來計算該信號中不同正弦波信號的頻率、振幅和相位。
和傅里葉變換演算法對應的是反傅里葉變換演算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波信號轉換成一個信號。因此,可以說,傅里葉變換將原來難以處理的時域信號轉換成了易於分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最後還可以利用傅里葉反變換將這些頻域信號轉換成時域信號。
從現代數學的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數表示成正弦基函數的線性組合或者積分。在不同的研究領域,傅里葉變換具有多種不同的變體形式,如連續傅里葉變換和離散傅里葉變換。
在數學領域,盡管最初傅里葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類:1. 傅里葉變換是線性運算元,若賦予適當的范數,它還是酉運算元;2. 傅里葉變換的逆變換容易求出,而且形式與正變換非常類似;3. 正弦基函數是微分運算的本徵函數,從而使得線性微分方程的求解可以轉化為常系數的代數方程的求解.在線性時不變雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;4. 離散形式的傅里葉的物理系統內,頻率是個不變的性質,從而系統對於復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲取;5. 著名的卷積定理指出:傅里葉變換可以化復變換可以利用數字計算機快速的算出(其演算法稱為快速傅里葉變換演算法(FFT))。
正是由於上述的良好性質,傅里葉變換在物理學、數論、組合數學、信號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。
圖像傅里葉變換
圖像的頻率是表徵圖像中灰度變化劇烈程度的指標,是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區域,對應的頻率值很低;而對於地表屬性變換劇烈的邊緣區域在圖像中是一片灰度變化劇烈的區域,對應的頻率值較高。傅里葉變換在實際中有非常明顯的物理意義,設f是一個能量有限的模擬信號,則其傅里葉變換就表示f的譜。從純粹的數學意義上看,傅里葉變換是將一個函數轉換為一系列周期函數來處理的。從物理效果看,傅里葉變換是將圖像從空間域轉換到頻率域,其逆變換是將圖像從頻率域轉換到空間域。換句話說,傅里葉變換的物理意義是將圖像的灰度分布函數變換為圖像的頻率分布函數,傅里葉逆變換是將圖像的頻率分布函數變換為灰度分布函數。
傅里葉變換以前,圖像(未壓縮的點陣圖)是由對在連續空間(現實空間)上的采樣得到一系列點的集合,我們習慣用一個二維矩陣表示空間上各點,則圖像可由z=f(x,y)來表示。由於空間是三維的,圖像是二維的,因此空間中物體在另一個維度上的關系就由梯度來表示,這樣我們可以通過觀察圖像得知物體在三維空間中的對應關系。為什麼要提梯度?因為實際上對圖像進行二維傅里葉變換得到頻譜圖,就是圖像梯度的分布圖,當然頻譜圖上的各點與圖像上各點並不存在一一對應的關系,即使在不移頻的情況下也是沒有。傅里葉頻譜圖上我們看到的明暗不一的亮點,實際上圖像上某一點與鄰域點差異的強弱,即梯度的大小,也即該點的頻率的大小(可以這么理解,圖像中的低頻部分指低梯度的點,高頻部分相反)。一般來講,梯度大則該點的亮度強,否則該點亮度弱。這樣通過觀察傅里葉變換後的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點數更多,那麼實際圖像是比較柔和的(因為各點與鄰域差異都不大,梯度相對較小),反之,如果頻譜圖中亮的點數多,那麼實際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對頻譜移頻到原點以後,可以看出圖像的頻率分布是以原點為圓心,對稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個好處,它可以分離出有周期性規律的干擾信號,比如正弦干擾,一副帶有正弦干擾,移頻到原點的頻譜圖上可以看出除了中心以外還存在以某一點為中心,對稱分布的亮點集合,這個集合就是干擾噪音產生的,這時可以很直觀的通過在該位置放置帶阻濾波器消除干擾。
另外說明以下幾點:
1、圖像經過二維傅里葉變換後,其變換系數矩陣表明:
若變換矩陣Fn原點設在中心,其頻譜能量集中分布在變換系數短陣的中心附近(圖中陰影區)。若所用的二維傅里葉變換矩陣Fn的原點設在左上角,那麼圖像信號能量將集中在系數矩陣的四個角上。這是由二維傅里葉變換本身性質決定的。同時也表明一股圖像能量集中低頻區域。
2 、變換之後的圖像在原點平移之前四角是低頻,最亮,平移之後中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)。 將其發展延伸,構造出了其他形式的積分變換:
從數學的角度理解積分變換就是通過積分運算,把一個函數變成另一個函數。也可以理解成是算內積,然後就變成一個函數向另一個函數的投影:
K(s,t)積分變換的核(Kernel)。當選取不同的積分域和變換核時,就得到不同名稱的積分變換。學術一點的說法是:向核空間投影,將原問題轉化到核空間。所謂核空間,就是這個空間裡面裝的是核函數。下表列出常見的變換及其核函數:
當然,選取什麼樣的核主要看你面對的問題有什麼特徵。不同問題的特徵不同,就會對應特定的核函數。把核函數作為基函數。將現在的坐標投影到核空間裡面去,問題就會得到簡化。之所以叫核,是因為這是最核心的地方。為什麼其他變換你都沒怎麼聽說過而只熟悉傅里葉變換和拉普拉斯變換呢?因為復指數信號才是描述這個世界的特徵函數!
㈢ 特徵提取與圖像處(二) 傅里葉變換
原文地址我也找不到了,吐槽一下上傳圖片也有點費勁.
知乎:Heinrich
微博:@花生油工人
知乎專欄:與時間無關的故事
謹以此文獻給大連海事大學的吳楠老師,柳曉鳴老師,王新年老師以及張晶泊老師。
——更新於2014.6.6,想直接看更新的同學可以直接跳到第四章————
我保證這篇文章和你以前看過的所有文章都不同,這是 2012 年還在果殼的時候寫的,但是當時沒有來得及寫完就出國了……於是拖了兩年,嗯,我是拖延症患者……
這篇文章的核心思想就是:
要讓讀者在不看任何數學公式的情況下理解傅里葉分析。
傅里葉分析不僅僅是一個數學工具,更是一種可以徹底顛覆一個人以前世界觀的思維模式。但不幸的是,傅里葉分析的公式看起來太復雜了,所以很多大一新生上來就懵圈並從此對它深惡痛絕。老實說,這么有意思的東西居然成了大學里的殺手課程,不得不歸咎於編教材的人實在是太嚴肅了。(您把教材寫得好玩一點會死嗎?會死嗎?)所以我一直想寫一個有意思的文章來解釋傅里葉分析,有可能的話高中生都能看懂的那種。所以,不管讀到這里的您從事何種工作,我保證您都能看懂,並且一定將體會到通過傅里葉分析看到世界另一個樣子時的快感。至於對於已經有一定基礎的朋友,也希望不要看到會的地方就急忙往後翻,仔細讀一定會有新的發現。
————以上是定場詩————
下面進入正題:
抱歉,還是要啰嗦一句:其實學習本來就不是易事,我寫這篇文章的初衷也是希望大家學習起來更加輕松,充滿樂趣。但是千萬!千萬不要把這篇文章收藏起來,或是存下地址,心裡想著:以後有時間再看。這樣的例子太多了,也許幾年後你都沒有再打開這個頁面。無論如何,耐下心,讀下去。這篇文章要比讀課本要輕松、開心得多……
一、什麼是頻域
從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。但如果我告訴你,用另一種方法來觀察世界的話,你會發現 世界是永恆不變的 ,你會不會覺得我瘋了?我沒有瘋,這個靜止的世界就叫做頻域。
先舉一個公式上並非很恰當,但意義上再貼切不過的例子:
在你的理解中,一段音樂是什麼呢?
這是我們對音樂最普遍的理解,一個隨著時間變化的震動。但我相信對於樂器小能手們來說,音樂更直觀的理解是這樣的:
好的!下課,同學們再見。
是的,其實這一段寫到這里已經可以結束了。上圖是音樂在時域的樣子,而下圖則是音樂在頻域的樣子。所以頻域這一概念對大家都從不陌生,只是從來沒意識到而已。
現在我們可以回過頭來重新看看一開始那句痴人說夢般的話:世界是永恆的。
將以上兩圖簡化:
時域:
頻域:
在時域,我們觀察到鋼琴的琴弦一會上一會下的擺動,就如同一支股票的走勢;而在頻域,只有那一個永恆的音符。
所以
你眼中看似落葉紛飛變化無常的世界,實際只是躺在上帝懷中一份早已譜好的樂章。
抱歉,這不是一句雞湯文,而是黑板上確鑿的公式:傅里葉同學告訴我們,任何周期函數,都可以看作是不同振幅,不同相位正弦波的疊加。在第一個例子里我們可以理解為,利用對不同琴鍵不同力度,不同時間點的敲擊,可以組合出任何一首樂曲。
而貫穿時域與頻域的方法之一,就是傳中說的傅里葉分析。傅里葉分析可分為傅里葉級數(Fourier Serie)和傅里葉變換(Fourier Transformation),我們從簡單的開始談起。
二、傅里葉級數(Fourier Series)的頻譜
還是舉個栗子並且有圖有真相才好理解。
如果我說我能用前面說的正弦曲線波疊加出一個帶 90 度角的矩形波來,你會相信嗎?你不會,就像當年的我一樣。但是看看下圖:
第一幅圖是一個郁悶的正弦波 cos(x)
第二幅圖是 2 個賣萌的正弦波的疊加 cos (x) +a.cos (3x)
第三幅圖是 4 個發春的正弦波的疊加
第四幅圖是 10 個便秘的正弦波的疊加
隨著正弦波數量逐漸的增長,他們最終會疊加成一個標準的矩形,大家從中體會到了什麼道理?
(只要努力,彎的都能掰直!)
隨著疊加的遞增,所有正弦波中上升的部分逐漸讓原本緩慢增加的曲線不斷變陡,而所有正弦波中下降的部分又抵消了上升到最高處時繼續上升的部分使其變為水平線。一個矩形就這么疊加而成了。但是要多少個正弦波疊加起來才能形成一個標准 90 度角的矩形波呢?不幸的告訴大家,答案是無窮多個。(上帝:我能讓你們猜著我?)
不僅僅是矩形,你能想到的任何波形都是可以如此方法用正弦波疊加起來的。這是沒有接觸過傅里葉分析的人在直覺上的第一個難點,但是一旦接受了這樣的設定,游戲就開始有意思起來了。
還是上圖的正弦波累加成矩形波,我們換一個角度來看看:
在這幾幅圖中,最前面黑色的線就是所有正弦波疊加而成的總和,也就是越來越接近矩形波的那個圖形。而後面依不同顏色排列而成的正弦波就是組合為矩形波的各個分量。這些正弦波按照頻率從低到高從前向後排列開來,而每一個波的振幅都是不同的。一定有細心的讀者發現了,每兩個正弦波之間都還有一條直線,那並不是分割線,而是振幅為 0 的正弦波!也就是說,為了組成特殊的曲線,有些正弦波成分是不需要的。
這里,不同頻率的正弦波我們成為頻率分量。
好了,關鍵的地方來了!!
如果我們把第一個頻率最低的頻率分量看作「1」,我們就有了構建頻域的最基本單元。
對於我們最常見的有理數軸,數字「1」就是有理數軸的基本單元。
(好吧,數學稱法為——基。在那個年代,這個字還沒有其他奇怪的解釋,後面還有正交基這樣的詞彙我會說嗎?)
時域的基本單元就是「1 秒」,如果我們將一個角頻率為
的正弦波 cos(
t)看作基礎,那麼頻域的基本單元就是
。
有了「1」,還要有「0」才能構成世界,那麼頻域的「0」是什麼呢?cos(0t)就是一個周期無限長的正弦波,也就是一條直線!所以在頻域,0 頻率也被稱為直流分量,在傅里葉級數的疊加中,它僅僅影響全部波形相對於數軸整體向上或是向下而不改變波的形狀。
接下來,讓我們回到初中,回憶一下已經死去的八戒,啊不,已經死去的老師是怎麼定義正弦波的吧。
正弦波就是一個圓周運動在一條直線上的投影。所以頻域的基本單元也可以理解為一個始終在旋轉的圓
想看動圖的同學請戳這里:
File:Fourier series square wave circles animation.gif
以及這里:
File:Fourier series sawtooth wave circles animation.gif
點出去的朋友不要被 wiki 拐跑了,wiki 寫的哪有這里的文章這么沒節操是不是。
介紹完了頻域的基本組成單元,我們就可以看一看一個矩形波,在頻域里的另一個模樣了:
這是什麼奇怪的東西?
這就是矩形波在頻域的樣子,是不是完全認不出來了?教科書一般就給到這里然後留給了讀者無窮的遐想,以及無窮的吐槽,其實教科書只要補一張圖就足夠了:頻域圖像,也就是俗稱的頻譜,就是——
再清楚一點:
可以發現,在頻譜中,偶數項的振幅都是0,也就對應了圖中的彩色直線。振幅為 0 的正弦波。
動圖請戳:
File:Fourier series and transform.gif
老實說,在我學傅里葉變換時,維基的這個圖還沒有出現,那時我就想到了這種表達方法,而且,後面還會加入維基沒有表示出來的另一個譜——相位譜。
但是在講相位譜之前,我們先回顧一下剛剛的這個例子究竟意味著什麼。記得前面說過的那句「世界是靜止的」嗎?估計好多人對這句話都已經吐槽半天了。想像一下,世界上每一個看似混亂的表象,實際都是一條時間軸上不規則的曲線,但實際這些曲線都是由這些無窮無盡的正弦波組成。我們看似不規律的事情反而是規律的正弦波在時域上的投影,而正弦波又是一個旋轉的圓在直線上的投影。那麼你的腦海中會產生一個什麼畫面呢?
我們眼中的世界就像皮影戲的大幕布,幕布的後面有無數的齒輪,大齒輪帶動小齒輪,小齒輪再帶動更小的。在最外面的小齒輪上有一個小人——那就是我們自己。我們只看到這個小人毫無規律的在幕布前表演,卻無法預測他下一步會去哪。而幕布後面的齒輪卻永遠一直那樣不停的旋轉,永不停歇。這樣說來有些宿命論的感覺。說實話,這種對人生的描繪是我一個朋友在我們都是高中生的時候感嘆的,當時想想似懂非懂,直到有一天我學到了傅里葉級數……
三、傅里葉級數(Fourier Series)的相位譜
上一章的關鍵詞是:從側面看。這一章的關鍵詞是:從下面看。
在這一章最開始,我想先回答很多人的一個問題:傅里葉分析究竟是干什麼用的?這段相對比較枯燥,已經知道了的同學可以直接跳到下一個分割線。
先說一個最直接的用途。無論聽廣播還是看電視,我們一定對一個詞不陌生——頻道。頻道頻道,就是頻率的通道,不同的頻道就是將不同的頻率作為一個通道來進行信息傳輸。下面大家嘗試一件事:
先在紙上畫一個sin(x),不一定標准,意思差不多就行。不是很難吧。
好,接下去畫一個sin(3x)+sin(5x)的圖形。
別說標准不標准了,曲線什麼時候上升什麼時候下降你都不一定畫的對吧?
好,畫不出來不要緊,我把sin(3x)+sin(5x)的曲線給你,但是前提是你不知道這個曲線的方程式,現在需要你把sin(5x)給我從圖里拿出去,看看剩下的是什麼。這基本是不可能做到的。
但是在頻域呢?則簡單的很,無非就是幾條豎線而已。
所以很多在時域看似不可能做到的數學操作,在頻域相反很容易。這就是需要傅里葉變換的地方。尤其是從某條曲線中去除一些特定的頻率成分,這在工程上稱為濾波,是信號處理最重要的概念之一,只有在頻域才能輕松的做到。
再說一個更重要,但是稍微復雜一點的用途——求解微分方程。(這段有點難度,看不懂的可以直接跳過這段)微分方程的重要性不用我過多介紹了。各行各業都用的到。但是求解微分方程卻是一件相當麻煩的事情。因為除了要計算加減乘除,還要計算微分積分。而傅里葉變換則可以讓微分和積分在頻域中變為乘法和除法,大學數學瞬間變小學算術有沒有。
傅里葉分析當然還有其他更重要的用途,我們隨著講隨著提。
————————————————————————————————————
下面我們繼續說相位譜:
通過時域到頻域的變換,我們得到了一個從側面看的頻譜,但是這個頻譜並沒有包含時域中全部的信息。因為頻譜只代表每一個對應的正弦波的振幅是多少,而沒有提到相位。基礎的正弦波A.sin(wt+θ)中,振幅,頻率,相位缺一不可,不同相位決定了波的位置,所以對於頻域分析,僅僅有頻譜(振幅譜)是不夠的,我們還需要一個相位譜。那麼這個相位譜在哪呢?我們看下圖,這次為了避免圖片太混論,我們用7個波疊加的圖。
鑒於正弦波是周期的,我們需要設定一個用來標記正弦波位置的東西。在圖中就是那些小紅點。小紅點是距離頻率軸最近的波峰,而這個波峰所處的位置離頻率軸有多遠呢?為了看的更清楚,我們將紅色的點投影到下平面,投影點我們用粉色點來表示。當然,這些粉色的點只標注了波峰距離頻率軸的距離,並不是相位。
這里需要糾正一個概念:時間差並不是相位差。如果將全部周期看作2Pi或者360度的話,相位差則是時間差在一個周期中所佔的比例。我們將時間差除周期再乘2Pi,就得到了相位差。
在完整的立體圖中,我們將投影得到的時間差依次除以所在頻率的周期,就得到了最下面的相位譜。所以,頻譜是從側面看,相位譜是從下面看。下次偷看女生裙底被發現的話,可以告訴她:「對不起,我只是想看看你的相位譜。」
注意到,相位譜中的相位除了0,就是Pi。因為cos(t+Pi)=-cos(t),所以實際上相位為Pi的波只是上下翻轉了而已。對於周期方波的傅里葉級數,這樣的相位譜已經是很簡單的了。另外值得注意的是,由於cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人為定義相位譜的值域為(-pi,pi],所以圖中的相位差均為Pi。
最後來一張大集合:
四、傅里葉變換(Fourier Tranformation)
相信通過前面三章,大家對頻域以及傅里葉級數都有了一個全新的認識。但是文章在一開始關於鋼琴琴譜的例子我曾說過,這個栗子是一個公式錯誤,但是概念典型的例子。所謂的公式錯誤在哪裡呢?
傅里葉級數的本質是將一個周期的信號分解成無限多分開的(離散的)正弦波,但是宇宙似乎並不是周期的。曾經在學數字信號處理的時候寫過一首打油詩:
往昔連續非周期,
回憶周期不連續,
任你ZT、DFT,
還原不回去。
(請無視我渣一樣的文學水平……)
在這個世界上,有的事情一期一會,永不再來,並且時間始終不曾停息地將那些刻骨銘心的往昔連續的標記在時間點上。但是這些事情往往又成為了我們格外寶貴的回憶,在我們大腦里隔一段時間就會周期性的蹦出來一下,可惜這些回憶都是零散的片段,往往只有最幸福的回憶,而平淡的回憶則逐漸被我們忘卻。因為,往昔是一個連續的非周期信號,而回憶是一個周期離散信號。
是否有一種數學工具將連續非周期信號變換為周期離散信號呢?抱歉,真沒有。
比如傅里葉級數,在時域是一個周期且連續的函數,而在頻域是一個非周期離散的函數。這句話比較繞嘴,實在看著費事可以乾脆回憶第一章的圖片。
而在我們接下去要講的傅里葉變換,則是將一個時域非周期的連續信號,轉換為一個在頻域非周期的連續信號。
算了,還是上一張圖方便大家理解吧:
或者我們也可以換一個角度理解:傅里葉變換實際上是對一個周期無限大的函數進行傅里葉變換。
所以說,鋼琴譜其實並非一個連續的頻譜,而是很多在時間上離散的頻率,但是這樣的一個貼切的比喻真的是很難找出第二個來了。
因此在傅里葉變換在頻域上就從離散譜變成了連續譜。那麼連續譜是什麼樣子呢?
你見過大海么?
為了方便大家對比,我們這次從另一個角度來看頻譜,還是傅里葉級數中用到最多的那幅圖,我們從頻率較高的方向看。
以上是離散譜,那麼連續譜是什麼樣子呢?
盡情的發揮你的想像,想像這些離散的正弦波離得越來越近,逐漸變得連續……
直到變得像波濤起伏的大海:
很抱歉,為了能讓這些波浪更清晰的看到,我沒有選用正確的計算參數,而是選擇了一些讓圖片更美觀的參數,不然這圖看起來就像屎一樣了。
不過通過這樣兩幅圖去比較,大家應該可以理解如何從離散譜變成了連續譜的了吧?原來離散譜的疊加,變成了連續譜的累積。所以在計算上也從求和符號變成了積分符號。
不過,這個故事還沒有講完,接下去,我保證讓你看到一幅比上圖更美麗壯觀的圖片,但是這里需要介紹到一個數學工具才能然故事繼續,這個工具就是——
五、宇宙耍帥第一公式:歐拉公式
虛數i這個概念大家在高中就接觸過,但那時我們只知道它是-1 的平方根,可是它真正的意義是什麼呢?
這里有一條數軸,在數軸上有一個紅色的線段,它的長度是1。當它乘以 3 的時候,它的長度發生了變化,變成了藍色的線段,而當它乘以-1 的時候,就變成了綠色的線段,或者說線段在數軸上圍繞原點旋轉了 180 度。
我們知道乘-1 其實就是乘了兩次 i 使線段旋轉了 180 度,那麼乘一次 i 呢——答案很簡單——旋轉了 90 度。
同時,我們獲得了一個垂直的虛數軸。實數軸與虛數軸共同構成了一個復數的平面,也稱復平面。這樣我們就了解到,乘虛數i的一個功能——旋轉。
現在,就有請宇宙第一耍帥公式歐拉公式隆重登場——
這個公式在數學領域的意義要遠大於傅里葉分析,但是乘它為宇宙第一耍帥公式是因為它的特殊形式——當x等於 Pi 的時候。
經常有理工科的學生為了跟妹子表現自己的學術功底,用這個公式來給妹子解釋數學之美:」石榴姐你看,這個公式里既有自然底數e,自然數 1 和0,虛數i還有圓周率 pi,它是這么簡潔,這么美麗啊!「但是姑娘們心裡往往只有一句話:」臭屌絲……「
這個公式關鍵的作用,是將正弦波統一成了簡單的指數形式。我們來看看圖像上的涵義:
歐拉公式所描繪的,是一個隨著時間變化,在復平面上做圓周運動的點,隨著時間的改變,在時間軸上就成了一條螺旋線。如果只看它的實數部分,也就是螺旋線在左側的投影,就是一個最基礎的餘弦函數。而右側的投影則是一個正弦函數。
關於復數更深的理解,大家可以參考:
復數的物理意義是什麼?
這里不需要講的太復雜,足夠讓大家理解後面的內容就可以了。
六、指數形式的傅里葉變換
有了歐拉公式的幫助,我們便知道:正弦波的疊加,也可以理解為螺旋線的疊加在實數空間的投影。而螺旋線的疊加如果用一個形象的栗子來理解是什麼呢?
光波
高中時我們就學過,自然光是由不同顏色的光疊加而成的,而最著名的實驗就是牛頓師傅的三棱鏡實驗:
所以其實我們在很早就接觸到了光的頻譜,只是並沒有了解頻譜更重要的意義。
但不同的是,傅里葉變換出來的頻譜不僅僅是可見光這樣頻率范圍有限的疊加,而是頻率從 0 到無窮所有頻率的組合。
這里,我們可以用兩種方法來理解正弦波:
第一種前面已經講過了,就是螺旋線在實軸的投影。
另一種需要藉助歐拉公式的另一種形式去理解:
將以上兩式相加再除2,得到:
這個式子可以怎麼理解呢?
我們剛才講過,e^(it)可以理解為一條逆時針旋轉的螺旋線,那麼e^(-it)則可以理解為一條順時針旋轉的螺旋線。而 cos (t)則是這兩條旋轉方向不同的螺旋線疊加的一半,因為這兩條螺旋線的虛數部分相互抵消掉了!
舉個例子的話,就是極化方向不同的兩束光波,磁場抵消,電場加倍。
這里,逆時針旋轉的我們稱為正頻率,而順時針旋轉的我們稱為負頻率(注意不是復頻率)。
好了,剛才我們已經看到了大海——連續的傅里葉變換頻譜,現在想一想,連續的螺旋線會是什麼樣子:
想像一下再往下翻:
是不是很漂亮?
你猜猜,這個圖形在時域是什麼樣子?
哈哈,是不是覺得被狠狠扇了一個耳光。數學就是這么一個把簡單的問題搞得很復雜的東西。
順便說一句,那個像大海螺一樣的圖,為了方便觀看,我僅僅展示了其中正頻率的部分,負頻率的部分沒有顯示出來。
如果你認真去看,海螺圖上的每一條螺旋線都是可以清楚的看到的,每一條螺旋線都有著不同的振幅(旋轉半徑),頻率(旋轉周期)以及相位。而將所有螺旋線連成平面,就是這幅海螺圖了。
好了,講到這里,相信大家對傅里葉變換以及傅里葉級數都有了一個形象的理解了,我們最後用一張圖來總結一下:
好了,傅里葉的故事終於講完了
㈣ 求翻譯-英語翻成中文
2 相關工作
關於時間序列搜索,大家已經提出了很多方法。在【1】中,稱為F指數的指數方案被用於處理數據序列和相同長度的查詢序列。首先,對每個數據序列進行了N點離散傅里葉變換。保存第一個fc系數,並把它作為fc維數的點。然後用R *-樹[16]檢索特徵點。對於范圍查詢,首先查詢序列類似地映射到fc維空間里的一點。然後,搜索R *-樹,返回所有與范圍查詢在誤差距離內的特徵點。這種方法可以確保沒有漏檢,但它可能會導致虛假警報。因此,返回值所對應的原來的1數據序列要經過與查詢序列的核對。把[1]的結果進一步推廣為[2],就提出了ST指數。它用來處理不同長度的數據序列。一個長度為n的滑動窗口被安置在數據序列上。每個窗口內的數列進行N點離散傅里葉變換。所有的數列都經過變形以後,將形成一個軌道。這條軌道被劃分成子軌道,然後由最小邊界矩形一個R *-樹(MBR)代表。對於范圍查詢,返回插入查詢序列的MBR。這個方法也保證不存在漏檢,但仍然是可能的誤檢,因此原始數據序列也要與查詢序列進行核對。在1.21提出的方法非常優雅。然而,他們使用歐幾里德距離序列的相似性,而不考慮任何轉換。正如在第1部分的例子所示,在某些應用中,綜合考慮序列的相似性的標定和轉換更好一些,如股票分析。在本文使用的相似性定義和在[4]中提出的類似。 [4]中,作者展開了相似查詢的大體框架。該框架包含一個轉換規則語言T。如果A可以通過T中定義的一系列的變形,轉化到B,那麼就說對象A與對象B相似。在T每次用轉化有一個定義的轉換成本,總成本用來衡量A和B之間的距離。[5]中,作者考慮T包含滑動平均和時間規整演算法的情況。首先表明,這種對T的定義實際應用范圍很廣。然後,他們用真實股票數據說明該轉換有助於確定類似股票價格走勢。他們還提出了能夠處理滑動平均和時間規整演算法的第一個索引方法,在【1,2】中建立了一個索引I。每個查詢都給出了相應的T。
累死了…… 這是數學的論文???
㈤ 傅里葉變換如何應用於實際的物理信號
凡有變化的波(交流、頻率)才能傳遞信號,一個一直不變的直流信號是無法傳遞信息的。這種「交流」是指廣義的,普遍的,無論是自然界里蝙蝠探路,人們互相交談,還是衛星接收信號,都屬於交流的范疇。為了傳遞信號,產生交流,我們需要以「波」作為信號的載體。最簡單的波,就以一定頻率傳播。蝙蝠發出了超聲波,人們說話,聲帶振動帶動了空氣疏密波(聲波),衛星識別電磁波。這樣,我們就有了頻率的概念。更進一步,除了手機GHz的波這些經典電磁波,在量子世界裡,原子的躍遷也是以一定的頻率發生的。我們甚至可以說,自然選擇了以這些單頻的模式為基礎。
對於一個信號來說,信號強度隨時間的變化規律就是時域特性,信號是由哪些單一頻率的信號合成的就是頻域特性。這里引入了時域頻域的概念。我們就有必要解釋一下為什麼時間和頻率來描述這個世界是等價的?什麼是時域?從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。
㈥ 高人一篇文章讀懂傅里葉變換
這篇文章的核心思想就是:
要讓讀者在不看任何數學公式的情況下理解傅里葉分析。
傅里葉分析不僅僅是一個數學工具,更是一種可以徹底顛覆一個人以前世界觀的思維模式。但不幸的是,傅里葉分析的公式看起來太復雜了,所以很多大一新生上來就懵圈並從此對它深惡痛絕。老實說,這么有意思的東西居然成了大學里的殺手課程,不得不歸咎於編教材的人實在是太嚴肅了。(您把教材寫得好玩一點會死嗎?會死嗎?)所以我一直想寫一個有意思的文章來解釋傅里葉分析,有可能的話高中生都能看懂的那種。所以,不管讀到這里的您從事何種工作,我保證您都能看懂,並且一定將體會到通過傅里葉分析看到世界另一個樣子時的快感。至於對於已經有一定基礎的朋友,也希望不要看到會的地方就急忙往後翻,仔細讀一定會有新的發現。
————以上是定場詩————
下面進入正題:
抱歉,還是要啰嗦一句:其實學習本來就不是易事,我寫這篇文章的初衷也是希望大家學習起來更加輕松,充滿樂趣。但是千萬!千萬不要把這篇文章收藏起來,或是存下地址,心裡想著:以後有時間再看。這樣的例子太多了,也許幾年後你都沒有再打開這個頁面。無論如何,耐下心,讀下去。這篇文章要比讀課本要輕松、開心得多……
一、嘛叫頻域
從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。但如果我告訴你,用另一種方法來觀察世界的話,你會發現世界是永恆不變的,你會不會覺得我瘋了?我沒有瘋,這個靜止的世界就叫做頻域。
先舉一個公式上並非很恰當,但意義上再貼切不過的例子:
在你的理解中,一段音樂是什麼呢?
這是我們對音樂最普遍的理解,一個隨著時間變化的震動。但我相信對於樂器小能手們來說,音樂更直觀的理解是這樣的:
好的!下課,同學們再見。
是的,其實這一段寫到這里已經可以結束了。上圖是音樂在時域的樣子,而下圖則是音樂在頻域的樣子。所以頻域這一概念對大家都從不陌生,只是從來沒意識到而已。
現在我們可以回過頭來重新看看一開始那句痴人說夢般的話:世界是永恆的。
將以上兩圖簡化:
時域:
在時域,我們觀察到鋼琴的琴弦一會上一會下的擺動,就如同一支股票的走勢;而在頻域,只有那一個永恆的音符。
你眼中看似落葉紛飛變化無常的世界,實際只是躺在上帝懷中一份早已譜好的樂章。(難以理解)
傅里葉同學告訴我們,任何周期函數,都可以看作是不同振幅,不同相位正弦波的疊加。在第一個例子里我們可以理解為,利用對不同琴鍵不同力度,不同時間點的敲擊,可以組合出任何一首樂曲。
而貫穿時域與頻域的方法之一,就是傳中說的傅里葉分析。傅里葉分析可分為傅里葉級數(Fourier Serie)和傅里葉變換(Fourier Transformation),我們從簡單的開始談起。
二、傅里葉級數(Fourier Series)
還是舉個栗子並且有圖有真相才好理解。
如果我說我能用前面說的正弦曲線波疊加出一個帶90度角的矩形波來,你會相信嗎?你不會,就像當年的我一樣。但是看看下圖:
第一幅圖是一個郁悶的正弦波cos(x)
第二幅圖是2個賣萌的正弦波的疊加cos(x)+a.cos(3x)
第三幅圖是4個發春的正弦波的疊加
第四幅圖是10個便秘的正弦波的疊加
隨著正弦波數量逐漸的增長,他們最終會疊加成一個標準的矩形,大家從中體會到了什麼道理?
(只要努力,彎的都能掰直!)
隨著疊加的遞增,所有正弦波中上升的部分逐漸讓原本緩慢增加的曲線不斷變陡,而所有正弦波中下降的部分又抵消了上升到最高處時繼續上升的部分使其變為水平線。一個矩形就這么疊加而成了。但是要多少個正弦波疊加起來才能形成一個標准90度角的矩形波呢?不幸的告訴大家,答案是無窮多個。
不僅僅是矩形,你能想到的任何波形都是可以如此方法用正弦波疊加起來的。這是沒有接觸過傅里葉分析的人在直覺上的第一個難點,但是一旦接受了這樣的設定,游戲就開始有意思起來了。
還是上圖的正弦波累加成矩形波,我們換一個角度來看看:
在這幾幅圖中,最前面黑色的線就是所有正弦波疊加而成的總和,也就是越來越接近矩形波的那個圖形。而後面依不同顏色排列而成的正弦波就是組合為矩形波的各個分量。這些正弦波按照頻率從低到高從前向後排列開來,而每一個波的振幅都是不同的。一定有細心的讀者發現了,每兩個正弦波之間都還有一條直線,那並不是分割線,而是振幅為0的正弦波!也就是說,為了組成特殊的曲線,有些正弦波成分是不需要的。
這里,不同頻率的正弦波我們成為頻率分量。
好了,關鍵的地方來了!!
如果我們把第一個頻率最低的頻率分量看作「1」,我們就有了構建頻域的最基本單元。
對於我們最常見的有理數軸,數字「1」就是有理數軸的基本單元。
(好吧,數學稱法為 ——基。在那個年代,這個字還沒有其他奇怪的解釋,後面還有正交基這樣的詞彙我會說嗎?)
時域的基本單元就是「1秒」,如果我們將一個角頻率為ω的正弦波cos(ωt)看作基礎,那麼頻域的基本單元就是ω。
有了「1」,還要有「0」才能構成世界,那麼頻域的「0」是什麼呢?cos(0t)就是一個周期無限長的正弦波,也就是一條直線!所以在頻域,0頻率也被稱為直流分量,在傅里葉級數的疊加中,它僅僅影響全部波形相對於數軸整體向上或是向下而不改變波的形狀。
接下來,讓我們回到初中,回憶一下老師是怎麼定義正弦波的吧。
正弦波就是一個圓周運動在一條直線上的投影。所以頻域的基本單元也可以理解為一個始終在旋轉的圓
介紹完了頻域的基本組成單元,我們就可以看一看一個矩形波,在頻域里的另一個模樣了:
這是什麼奇怪的東西?
這就是矩形波在頻域的樣子,是不是完全認不出來了?教科書一般就給到這里然後留給了讀者無窮的遐想,以及無窮的吐槽,其實教科書只要補一張圖就足夠了:頻域圖像,也就是俗稱的頻譜,就是
再清楚一點:
可以發現,在頻譜中,偶數項的振幅都是0,也就對應了圖中的彩色直線。振幅為0的正弦波。
老實說,在我學傅里葉變換時,維基的這個圖還沒有出現,那時我就想到了這種表達方法,而且,後面還會加入維基沒有表示出來的另一個譜——相位譜。
但是在講相位譜之前,我們先回顧一下剛剛的這個例子究竟意味著什麼。記得前面說過的那句「世界是靜止的」嗎?估計好多人對這句話都已經吐槽半天了。想像一下,世界上每一個看似混亂的表象,實際都是一條時間軸上不規則的曲線,但實際這些曲線都是由這些無窮無盡的正弦波組成。我們看似不規律的事情反而是規律的正弦波在時域上的投影,而正弦波又是一個旋轉的圓在直線上的投影。那麼你的腦海中會產生一個什麼畫面呢?
我們眼中的世界就像皮影戲的大幕布,幕布的後面有無數的齒輪,大齒輪帶動小齒輪,小齒輪再帶動更小的。在最外面的小齒輪上有一個小人——那就是我們自己。我們只看到這個小人毫無規律的在幕布前表演,卻無法預測他下一步會去哪。而幕布後面的齒輪卻永遠一直那樣不停的旋轉,永不停歇。這樣說來有些宿命論的感覺。說實話,這種對人生的描繪是我一個朋友在我們都是高中生的時候感嘆的,當時想想似懂非懂,直到有一天我學到了傅里葉級數……
㈦ 傅里葉變換有哪些具體的應用
㈧ 傅里葉分析
姓名:宮松濤
學號:19021210927
【嵌牛導讀】傅里葉分析不僅僅是一個數學工具,更是一種可以徹底顛覆一個人以前世界觀的思維模式。但不幸的是,傅里葉分析的公式看起來太復雜了,所以很多大一新生上來就懵圈並從此對它深惡痛絕。老實說,這么有意思的東西居然成了大學里的殺手課程,不得不歸咎於編教材的人實在是太嚴肅了。所以這篇文章來解釋傅里葉分析,有可能的話高中生都能看懂的那種。所以,不管讀到這里的您從事何種工作,我保證您都能看懂,並且一定將體會到通過傅里葉分析看到世界另一個樣子時的快感。至於對於已經有一定基礎的朋友,也希望不要看到會的地方就急忙往後翻,仔細讀一定會有新的發現。
【嵌牛提問】如何理解傅里葉變換?
【嵌牛正文】
一、什麼是頻域
從我們出生,我們看到的世界都以時間貫穿,股票的走勢、人的身高、汽車的軌跡都會隨著時間發生改變。這種以時間作為參照來觀察動態世界的方法我們稱其為時域分析。而我們也想當然的認為,世間萬物都在隨著時間不停的改變,並且永遠不會靜止下來。但如果我告訴你,用另一種方法來觀察世界的話,你會發現世界是永恆不變的,你會不會覺得我瘋了?我沒有瘋,這個靜止的世界就叫做頻域。
先舉一個 公式上並非很恰當 ,但意義上再貼切不過的例子:
在你的理解中,一段音樂是什麼呢?
這是我們對音樂最普遍的理解,一個隨著時間變化的震動。但我相信對於樂器小能手們來說,音樂更直觀的理解是這樣的:
好的!下課,同學們再見。
是的,其實這一段寫到這里已經可以結束了。上圖是音樂在時域的樣子,而下圖則是音樂在頻域的樣子。所以頻域這一概念對大家都從不陌生,只是從來沒意識到而已。
現在我們可以回過頭來重新看看一開始那句痴人說夢般的話:世界是永恆的。
將以上兩圖簡化:
時域:
頻域:
在時域,我們觀察到鋼琴的琴弦一會上一會下的擺動,就如同一支股票的走勢;而在頻域,只有那一個永恆的音符。
所以
你眼中看似落葉紛飛變化無常的世界,實際只是躺在上帝懷中一份早已譜好的樂章。
抱歉,這不是一句雞湯文,而是黑板上確鑿的公式:傅里葉同學告訴我們,任何周期函數,都可以看作是不同振幅,不同相位正弦波的疊加。在第一個例子里我們可以理解為,利用對不同琴鍵不同力度,不同時間點的敲擊,可以組合出任何一首樂曲。
而貫穿時域與頻域的方法之一,就是傳中說的傅里葉分析。傅里葉分析可分為傅里葉級數(Fourier Serie)和傅里葉變換(Fourier Transformation),我們從簡單的開始談起。
㈨ 什麼是傅立葉變換為什麼要進行傅立葉變換一些回憶
傅立葉變換表示能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。
傅里葉變換可以將原來難以處理的時域信號轉換成了易於分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最後還可以利用傅里葉反變換將這些頻域信號轉換成時域信號。
正是由於擁有良好的性質,傅里葉變換在物理學、數論、組合數學、信號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。
(9)傅里葉變換股票數據擴展閱讀:
在數學領域,盡管最初傅里葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。
"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類:
1、傅里葉變換是線性運算元,若賦予適當的范數,它還是酉運算元。
2、傅里葉變換的逆變換容易求出,而且形式與正變換非常類似。
3、正弦基函數是微分運算的本徵函數,從而使得線性微分方。