Ⅰ earch模型結果怎麼看
根據股票市場收益率序列呈尖峰厚尾、偏態、波動集聚和杠桿效應等特徵,本文構建Skew-GED(SGED)分布下的變參數ARIMA+EGARCH動態混合預測模型來挖掘和分析收益率序列的內在規律,運用r語言通過實時最優化動態模型的參數估計,分別對5隻股票日對數收益率序列的未來收益情況進行每日預測每日更新,輸出交易信號;最後通過滾動時間窗進行推進分析,解決可能存在的過度擬合問題,結果表明動態模型能更好地描述收益率特性,提高預測准確性。
【關鍵詞】變參數ARIMA+EGARCH動態模型;參數優化;推進分析;股票收益率預測
一、引言
波動性是股票市場最為重要特性之一,因此,探討其波動規律、把握其運行趨勢成為當今學術界與實務界研究的熱點。
股票收益率波動模型的研究主要有:ARMA 類模型、ARCH 類模型及二者的混合模型,模型中波動誤差分布的假定主要有正態分布、T 分布、GED 分布和SKT 分布。國內外大量研究表明,收益率序列波動通常具有集聚性、分布的尖峰厚尾性以及有偏性逗褲。本文以5隻股票為例,通過對股票日對數收益率序列的分析,發現股票日對數收益率波動存在明顯的「尖峰厚尾」現象、波動集聚和非對稱特徵。通過建立收益率序列的ARIMA 模型處理中期記憶特徵,然後再利用EGARCH模型處理異方差的非對稱以及波動率聚集特徵,採用S-GED分布解決股票收益率波動的「尖峰厚尾」現象以及有偏分布問題,就能夠很好地解決股票收益率的這些特性,取得較理想的擬合及預測效果。
本文利用Skew-GED(SGED)分布下的變參數ARIMA+EGARCH動態預測模型對給定的5隻股票收益率進行預測,為股票收益率預測和股票投資提供一種思路。任何一種預測方法都要回歸現實,接受實踐的檢驗,本文的預測部分證明了該模型具有一定的預測精度,在一定程度上能夠為投資者和金融市場相關人員及機構提供決策依據。
二山宴簡、股票收益率預測建模
2.1模型建立原理
2.1.1進行股票收益率的預測
在股票市場中,准確的股票收益率預測是市場交易各方共同關心的重要問題。多數金融研究針對的是資產收祥姿益率而不是資產價格。Campbell,Lo和MacKinlay(1997)給出了使用收益率的兩個主要理由:第一、對普通投資者來說,資產收益率完全體現了該資產的投資機會,且與其投資規模無關;第二,收益率序列比價格序列更容易處理,因為前者有更好的統
Ⅱ 時間序列分析模型——ARIMA模型
姓名:車文揚 學號:16020199006
【嵌牛導讀】:什麼是 ARIMA模型
【嵌牛鼻子】: ARIMA
【嵌牛提問】: ARIMA模型可以具體應用到什麼地方?
【嵌牛正文】:
一、研究目的
傳統的經濟計量方法是以經濟理論為基礎來描述變數關系的模型。但經濟理論通常不足以對變數之間的動態聯系提供一個嚴密的說明,而且內生變數既可以出現在方程的左端又可以出現在方程的右端使得估計和推斷變得更加復雜。為了解決這些問題而出現了一種用非結構方法來建立各個變數之間關系的模型,如向量自回歸模型(vector autoregression,VAR)和向量誤差修正模型(vector error correction model,VEC)。
在經典的回歸模型中,主要是 通過回歸分析來建立不同變數之間的函數關系(因果關系),以考察事物之間的聯系 。本案例要討論如何 利用時間序列 數據本身建立模型,以研究事物發展自身的規律 ,並據此對事物未來的發展做出預測。研究時間序列數據的意義:在現實中,往往需要研究某個事物其隨時間發展變化的規律。這就需要通過研究該事物過去發展的歷史記錄,以得到其自身發展的規律。在現實中很多問題,如利率波動、收益率變化、反映股市行情的各種指數等通常都可以表達為時間序列數據,通過研究這些數據,發現這些經濟變數的變化規律(對於某些變數來說,影響其發展變化的因素太多,或者是主要影響變數的數據難以收集,以至於難以建立回歸模型來發現其變化發展規律,此時,時間序列分析模型就顯現其優勢——因為這類模型不需要建立因果關系模型,僅需要其變數本身的數據就可以建模),這樣的一種建模方式就屬於時間序列分析的研究范疇。而時間序列分析中,ARIMA模型是最典型最常用的一種模型。
二、ARIMA模型的原理
1、ARIMA的含義。 ARIMA包含3個部分,即AR、I、MA。AR——表示auto regression,即自回歸模型;I——表示integration,即單整階數,時間序列模型必須是平穩性序列才能建立計量模型,ARIMA模型作為時間序列模型也不例外,因此首先要對時間序列進行單位根檢驗,如果是非平穩序列,就要通過差分來轉化為平穩序列,經過幾次差分轉化為平穩序列,就稱為幾階單整;MA——表示moving average,即移動平均模型。可見,ARIMA模型實際上是AR模型和MA模型的組合。
ARIMA模型與ARMA模型的區別:ARMA模型是針對平穩時間序列建立的模型。ARIMA模型是針對非平穩時間序列建模。換句話說,非平穩時間序列要建立ARMA模型,首先需要經過差分轉化為平穩時間序列,然後建立ARMA模型。
2、ARIMA模型的原理。 正如前面介紹,ARIMA模型實際上是AR模型和MA模型的組合。
AR模型的形式如下:
其中:參數為常數,是階自回歸模型的系數;為自回歸模型滯後階數;是均值為0,方差為的白雜訊序列。模型記做——表示階自回歸模型。
MA模型的形式如下:
其中:參數為常數;參數是階移動平均模型的系數;為移動平均模型滯後階數;是均值為0,方差為的白雜訊序列。模型記做——表示階移動平均模型。
ARIMA模型的形式如下:
模型記做。為自回歸模型滯後階數,為時間序列單整階數,為階移動平均模型滯後階數。當時,,此時ARIMA模型退化為MA模型;當時,,ARIMA模型退化為AR模型。
3、建立ARIMA模型需要解決的3個問題。 由以上分析可知,建立一個ARIMA模型需要解決以下3個問題:
(1)將非平穩序列轉化為平穩序列。
(2)確定模型的形式。即模型屬於AR、MA、ARMA中的哪一種。這主要是通過 模型識別 來解決的。
(3)確定變數的滯後階數。即和的數字。這也是通過 模型識別 完成的。
4、ARIMA模型的識別
ARIMA模型識別的工具為自相關系數(AC)和偏自相關系數(PAC)。
自相關系數: 時間序列滯後k階的自相關系數由下式估計:
其中是序列的樣本均值,這是相距k期值的相關系數。稱為時間序列的自相關系數,自相關系數可以部分的刻畫一個隨機過程的形式。它表明序列的鄰近數據之間存在多大程度的相關性。
偏自相關系數: 偏自相關系數是在給定的條件下,之間的條件相關性。其相關程度用偏自相關系數度量。在k階滯後下估計偏自相關系數的計算公式為:
其中是在k階滯後時的自相關系數估計值。稱為偏相關是因為它度量了k期間距的相關而不考慮k-1期的相關。如果這種自相關的形式可由滯後小於k階的自相關表示,那麼偏相關在k期滯後下的值趨於0。
識別:
AR(p) 模型 的自相關系數是隨著k的增加而呈現指數衰減或者震盪式的衰減,具體的衰減形式取決於AR(p)模型滯後項的系數;AR(p)模型的偏自相關系數是p階截尾的。因此可以通過識別AR(p)模型的偏自相關系數的個數來確定AR(p)模型的階數p。
MA(q) 模型 的自相關系數在q步以後是截尾的。MA(q)模型的偏自相關系數一定呈現出拖尾的衰減形式。
ARMA(p,q) 模型 是AR(p)模型和MA(q)模型的組合模型,因此ARMA(p,q)的自相關系數是AR(p)自相關系數和MA(q)的自相關系數的混合物。當p=0時,它具有截尾性質;當q=0時,它具有拖尾性質;當p,q都不為0,它具有拖尾性質。
通常,ARMA(p,q)過程的偏自相關系數可能在p階滯後前有幾項明顯的 尖柱 ,但從p階滯後項開始逐漸趨於0;而它的自相關系數則是在q階滯後前有幾項明顯的 尖柱 ,從q階滯後項開始逐漸趨於0。
三、數據和變數的選擇
本案例選取我國實際GDP的時間序列建立ARIMA模型,樣本區間為1978—2001。數據來源於國家統計局網站上各年的統計年鑒,GDP數據均通過GDP指數換算為以1978年價格計算的值。見表1:
表1:我國1978—2003年GDP(單位:億元)
年度GDP年度GDP年度GDP
19783605.6198610132.8199446690.7
19794074198711784.7199558510.5
19804551.3198814704199668330.4
19814901.4198916466199774894.2
19825489.2199018319.5199879003.3
19836076.3199121280.4199982673.1
19847164.4199225863.7200089340.9
19858792.1199334500.7200198592.9
四、ARIMA模型的建立步驟
1、單位根檢驗,確定單整階數。
由單位根檢驗的案例分析可知,GDP時間序列為2階單整的。即d=2。通過2次差分,將GDP序列轉化為平穩序列 。利用序列來建立ARMA模型。
2、模型識別
確定模型形式和滯後階數,通過自相關系數(AC)和偏自相關系數(PAC)來完成識別。
首先將GDP數據輸入Eviews軟體,查看其二階差分的AC和PAC。打開GDP序列窗口,點擊View按鈕,出現下來菜單,選擇Correlogram(相關圖),如圖:
打開相關圖對話框,選擇二階差分(2nd difference),點擊OK,得到序列的AC和PAC。(也可以將GDP序列先進行二階差分,然後在相關圖中選擇水平(Level))
從圖中可以看出,序列的自相關系數(AC)在1階截尾,偏自相關系數(PAC)在2階截尾。因此判斷模型為ARMA模型,且,。即:
3、建模
由以上分析可知,建立模型。首先將GDP序列進行二次差分,得到序列。然後在Workfile工作文件簿中新建一個方程對話框,採用 列表法 的方法對方程進行定義。自回歸滯後項用ar表示,移動平均項用ma表示。本例中自回歸項有兩項,因此用ar(1)、ar(2)表示,移動平均項有一項,用ma(1)表示,如圖:
點擊確定,得到模型估計結果:
從擬合優度看,,模型擬合效果較好,DW統計量為2.43,各變數t統計量也通過顯著性檢驗,模型較為理想。對殘差進行檢驗,也是平穩的,因此判斷模型建立正確。
Ⅲ 如何用Arma模型做股票估計
時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值。ARMA模型是一種最常見的重要時間序列模型,被廣泛應用到經濟領域預測中。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取。
由於時間序列模型往往需要大樣本,所以這里我選取長江證券從09/03/20到09/06/19日開盤價,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,再觀察其平穩性。
2.數據平穩性分析。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,首先直接對數據平穩檢驗,沒通過檢驗,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩。
可以看出差分後,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型,並定階。可以先生成原始數據的一階差分數據dls,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,MA或者是ARMA模型。
(1)先觀測一階差分數據dls的AC和PAC圖。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p,q)。經多輪比較不同ARMA(p,q)模型,可以得出相對應AIC 和 SC的值。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的。最終選取ARIMA(1,1,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的檢驗。選取ARIMA(1,1,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近,且Q值基本通過檢驗,殘差不明顯存在相關,即可認為殘差中沒有包含太多信息,模型擬合基本符合。
5.股價預測。利用以上得出的模型,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點,其他日期的誤差皆在接受范圍內。
綜上所述,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討。在後期,將繼續在這方面做出自己的摸索。
Ⅳ 時間序列基礎
1.隨機時序分析的基本概念
1)隨機變數:簡單的隨機現象,如某班一天學生出勤人數,是靜態的。
2)隨機過程:隨機現象的動態變化過程。動態的。如某一時期各個時刻的狀態。
所謂隨機過程,就是說現象的變化沒有確定形式,沒有必然的變化規律。用數學語言來說,就是事物變化的過程不能用一個(或幾個)時間t的確定的函數來描述。
如果對於每一特定的t屬於T(T是時間集合),X(t)是一個隨機變數,則稱這一族無窮多個隨機變數{X(t),t屬於T}是一個隨機過程。
2.白雜訊序列
1)純隨機過程:隨機變數X(t)(t=1,2,3……),如果是由一個不相關的隨機變數的序列構成的,即對於所有s不等於k,隨機變數Xs和Xk的協方差為零,則稱其為 純隨機過程 。
2)白雜訊過程:如果一個純隨機過程的期望和方差均為常數,則稱之為 白雜訊過程 。白雜訊過程的樣本實稱成為白雜訊序列,簡稱白雜訊。
3)高斯白雜訊序列:如果白雜訊具體是服從均值為0、方差為常數的正態分布,那就是 高斯白雜訊序列 。
3.平穩性序列
1)平穩性可以說是時間序列分析的基礎。平穩的通俗理解就是時間序列的一些行為不隨時間改變, 所謂平穩過程就是其統計特性不隨時間的平移而變化的過程。
2)即時間序列內含的規律和邏輯,要在被預測的未來時間段內能夠延續下去。這樣我們才能用歷史信息去預測未來信息,類似機器學習中的訓練集和測試集同分布。
3)如果時間序列的變化是沒有規律的、完全隨機的,那麼預測模型也就沒有用。
4)平穩性的數學表達:如果時間序列在某一常數附近波動且波動范圍有限,即有常數均值和常數方差,並且延遲k期的序列變數的自協方差和自相關系數是相等的或者說延遲k期的序列變數之間的影響程度是一樣的,則稱該序列為平穩序列。簡單說就是沒有明顯趨勢且波動范圍有限。
4.嚴平穩/強平穩
1)通俗來說,就是時間序列的聯合分布隨著時間變化嚴格保持不變。
2)數學表達:如果對所有的時刻 t, (yt1,yt2,…ytm)的聯合分布與(y(t1+k),(yt2+k),…y(tm+k))的聯合分布相同,我們稱時間序列 {yt} 是嚴平穩的。也就是時間序列的聯合分布在時間的平移變換下保持不變。
5.弱平穩
1)數學表達:均值不變,協方差Cov(yt,y(t-k))=γk,γk依賴於k。
2)即協方差也不隨時間改變,而僅與時間差k相關。
3)可以根據根據時間序列的折線圖等大致觀察數據的(弱)平穩性:*所有數據點在一個常數水平上下以相同幅度波動。
4)弱平穩的線性時間序列具有短期相關性(證明見參考書),即通常只有近期的序列值對現時值得影響比較明顯,間隔越遠的過去值對現時值得影響越小。至於這個間隔,也就是下面要提到的模型的階數。
6.嚴平穩和弱平穩的關系
1)嚴平穩是一個很強的條件,難以用經驗的方法驗證,所以一般將弱平穩性作為模型的假設條件。
2)兩者並不是嚴格的包含與被包含關系,但當時間序列是正態分布時,二者等價。
7.單位根非平穩序列(可轉換為平穩序列的非平穩序列)
在金融數據中,通常假定資產收益率序列是弱平穩的。但還有一些研究對象,比如利率、匯率、資產的價格序列,往往不是平穩的。對於資產的價格序列,其非平穩性往往由於價格沒有固定的水平,這樣的非平穩序列叫做單位根(unit-root)非平穩序列。
1)最著名的單位根非平穩序列的例子是隨機遊走(random walk)模型:
pt=μ+p(t-1)+εt
μ是常數項(漂移:drift)。εt是白雜訊序列,則pt就是一個隨機遊走。它的形式和AR模型很像,但不同之處在於,AR模型中,系數的模需要小於1,這是AR的平穩性條件,而隨機遊走相當於系數為1的AR公式,不滿足AR模型的平穩性條件。
隨機遊走模型可作為(對數)股價運動的統計模型,在這樣的模型下,股價是不可預測的。因為εt關於常數對稱,所以在已知p(t-1)的條件下,pt上升或下降的概率都是50%,無從預測。
2)帶趨勢項的時間序列
pt=β0+β1*t+yt,yt是一個平穩時間序列。
帶漂移的隨機遊走模型,其均值和方差都隨時間變化;而帶趨勢項的時間序列,其均值隨時間變化,但方差則是不變的常數。
單位根非平穩序列可以進行平穩化處理轉換為平穩序列。比如用差分法處理隨機遊走序列,用用簡單的回歸分析移除時間趨勢處理帶趨勢項的時間序列。
建立具體的模型,需解決如下三個問題模型的具體形式、時序變數的滯後期以及隨機擾動項的結構。
μ是yt的均值;ψ是系數,決定了時間序列的線性動態結構,也被稱為權重,其中ψ0=1;{εt}為高斯白雜訊序列,它表示時間序列{yt}在t時刻出現了新的信息,所以εt稱為時刻t的innovation(新信息)或shock(擾動)。
線性時間序列模型,就是描述線性時間序列的權重ψ的計量經濟模型或統計模型,比如ARIMA。因為並非所有金融數據都是線性的,所以不是所有金融數據都適合ARIMA等模型。
①自回歸模型(AR)
用變數自身的歷史時間數據對變數進行回歸,從而預測變數未來的時間數據。
p階(滯後值,可暫理解為每個移動窗口有p期)自回歸公式即AR(p):
②移動平均模型(MA)
移動平均模型關注的是誤差項的累加,能夠有效消除預測中的隨機波動。
可以看作是白雜訊序列的簡單推廣,是白雜訊序列的有限線性組合。也可以看作是參數受到限制的無窮階AR模型。
③自回歸移動平均模型(ARMA)
有時候,要用很多階數的AR和MA模型(見後面的定階問題),為解決這個問題提出ARMA模型。
對於金融中的收益率序列,直接使用ARMA模型的時候較少,但其概念與波動率建模很相關,GARCH模型可以認為是對{εt}的ARMA模型。
④自回歸差分移動平均模型(ARIMA)
ARIMA比ARMA僅多了個"I",代表的含義可理解為 差分。
一些非平穩序列經過d次差分後,可以轉化為平穩時間序列。我們對差分1次後的序列進行平穩性檢驗,若果是非平穩的,則繼續差分。直到d次後檢驗為平穩序列。
⑤一般分析過程
1、 平穩性檢驗
ADF檢驗(單位根檢驗):這是一種檢查數據穩定性的統計測試。
原假設(無效假設):時間序列是不穩定的。
2、 平穩化處理
平穩化的基本思路是:通過建模並估計趨勢和季節性這些因素,並從時間序列中移除,來獲得一個穩定的時間序列,然後再使用統計預測技術來處理時間序列,最後將預測得到的數據,通過加入趨勢和季節性等約束,來還原到原始時間序列數據。
2.0 對數變換
對某些時間序列需要取對數處理,一是可以將一些指數增長的時間序列變成線性增長,二是可以穩定序列的波動性。對數變換在經濟金融類時間序列中常用。
2.1 差分法
如果是單位根非平穩的(比如隨機遊走模型),可以對其進行差分化。它能讓數據呈現一種更加平穩的趨勢。差分階數的選擇通常越小越好,只要能夠使得序列穩定就行。
2.2 平滑法
移動平均、指數加權移動平均
註:經差分或平滑後的數據可能因包含缺失值而不能使用檢驗,需要將缺失值去除
2.3 分解法
建立有關趨勢和季節性的模型,並從模型中刪除它們。
3 、建立模型:模型選擇和模型的定階
模型的選擇即在AR、MA、ARMA、ARIMA中間如何選擇。
模型的定階即指定上面過程中產生的超參數p、q和d(差分的階數)。
(1)用ACF和PACF圖判斷使用哪種線性時間序列模型
AR模型:ACF拖尾,PACF截尾,看PACF定階。
MA模型:ACF截尾,PACF拖尾,看ACF定階。
ARMA模型:都拖尾。(EACF定階)
截尾:在某階後 迅速 趨於0(後面大部分階的對應值在二倍標准差以內);
拖尾:按指數衰減或震盪,值到後面還有增大的情況。
ARIMA模型:適用於差分後平穩的序列。
(2)利用 信息准則 函數選擇合適的階
對於個數不多的時序數據,可以通過觀察自相關圖和偏相關圖來進行模型識別,倘若要分析的時序數據量較多,例如要預測每隻股票的走勢,就不可能逐個去調參了。這時可以依據AIC或BIC准則識別模型的p, q值,通常認為AIC或BIC值越小的模型相對更優。
AIC或BIC准則綜合考慮了殘差大小和自變數的個數,殘差越小AIC或BIC值越小,自變數個數越多AIC或BIC值越大。AIC或BIC准則可以說是對模型過擬合設定了一個標准。
AIC (Akaike information criterion,赤池信息度量准則)
AIC=2k-2ln(L)
· BIC (Bayesian information criterion,貝葉斯信息度量准則)
BIC=kln(n)-2ln(L)
k為模型的超參數個數,n為樣本數量,L為似然函數。
類比機器學習中的損失函數=經驗損失函數+正則化項。
模型選擇標准:AIC和BIC越小越好(在保證精度的情況下模型越簡單越好)
4 、模型檢驗和評估(之前應切分訓練集和驗證集)
檢驗殘差是否符合標准(QQ圖):是否服從均值為0,方差是常數的正態分布(εt是否是高斯白雜訊序列)。
擬合優度檢驗(模型的評估):R 2和調整後的R 2(R^2隻適用於平穩序列)。
5 、預測
如果之前進行了標准化、差分化等,需要進行還原:
標准化的還原要注意是log(x+1)還是log(x)。
1 、基礎概念
波動率
在期權交易中,波動率是標的資產的收益率的條件標准差。之前的平穩序列假設方差為常數,但當序列的方差不是常數時,我們需要用波動率對其變化進行描述。
對於金融時間序列,波動率往往具有以下特徵:
存在波動率聚集(volatility cluster)現象。 即波動率在一些 時間段 上高,一些時間段上低。
波動率以連續時間變化,很少發生跳躍。
波動率不會發散到無窮,而是在固定的范圍內變化(統計學角度上說,其是平穩的)
杠桿效應:波動率對價格大幅上升和大幅下降的反應是不同的。
波動率模型/條件異方差模型
給資產收益率的波動率進行建模的模型叫做條件異方差模型。這些波動率模型試圖刻畫的數據有這樣的特性: 它們是序列不相關或低階序列相關的(比如股票的日收益率可能相關,但月收益率則無關),但又不是獨立的 。波動率模型就是試圖刻畫序列的這種非獨立性。
定義信息集F(t-1)是包含過去收益率的一切線性函數,假定F(t-1)給定,那麼在此條件下時間序列yt的條件均值和條件方差分別表示為:
Ⅳ 度量股票市場的波動性有哪些常見方法
1.首先你要知道股票的數據是時間序列數據。
經研究表明,股票數據是有自相關性的,所以古典的回歸模型擬合常常是無效的。
2.另外股票數據序列是具有平穩性,或一階差分、高階差分平穩性
所以一般來說都會採用平穩性時間序列模型。
簡單的如AR(p), MA(q), ARMA(p,q)模型等。
3.但由於這些數據往往還有條件異方差性。進一步的模型修正
有ARCH(p) , GARCH(p,q)等模型。
3中的模型是現今一些研究股票波動的主流手段的基礎。
4.如果要研究多支股票波動的聯合分布,可以用Copula理論進行建模(這個一般用於VaR,ES風險度量,比較前沿,國內90年代才開始引進,但並不算太難)
5.另外還有一些非實證的手段,那是搞數學的弄的了