⑴ 看股票用什麼坐標
看股票使用的坐標是時間序列坐標。
詳細解釋如下:
在看股票走勢圖或分析股票數據時,常用的坐標系統是時間序列坐標。時間序列坐標是一種基於時間變化的坐標體系,其中橫軸代表時間,縱軸代表股票價格或者其他相關的股票數據。
在這種坐標下,投資者可以清晰地看到股票價格的變動趨勢。例如,通過日K線圖,投資者可以看到每日股票的開盤價、收盤價、最高價和最低價,從而判斷股票的走勢和趨勢。此外,時間序列坐標還可以幫助投資者分析股票價格的波動周期、支撐位和壓力位等重要信息。這對於制定投資策略和進行交易決策具有重要意義。
除了時間序列坐標,有時在分析股票時還會使用其他類型的坐標軸,如價格百分比坐標等。但這些坐標軸主要用於特定的分析場景或特殊的數據展示需求。對於大多數投資者而言,時間序列坐標是最直觀、最常用的坐標系統,因為它能清晰地展示股票的時間演變過程和價格走勢。
總之,當觀察和分析股票時,通常會使用基於時間變化的時間序列坐標。這種坐標系統有助於投資者直觀地了解股票的走勢、趨勢以及價格波動情況,從而做出更明智的投資決策。
⑵ 如何用Arma模型做股票估計
時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值。ARMA模型是一種最常見的重要時間序列模型,被廣泛應用到經濟領域預測中。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取。
由於時間序列模型往往需要大樣本,所以這里我選取長江證券從09/03/20到09/06/19日開盤價,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,再觀察其平穩性。
2.數據平穩性分析。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,首先直接對數據平穩檢驗,沒通過檢驗,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩。
可以看出差分後,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型,並定階。可以先生成原始數據的一階差分數據dls,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,MA或者是ARMA模型。
(1)先觀測一階差分數據dls的AC和PAC圖。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p,q)。經多輪比較不同ARMA(p,q)模型,可以得出相對應AIC 和 SC的值。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的。最終選取ARIMA(1,1,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的檢驗。選取ARIMA(1,1,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近,且Q值基本通過檢驗,殘差不明顯存在相關,即可認為殘差中沒有包含太多信息,模型擬合基本符合。
5.股價預測。利用以上得出的模型,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點,其他日期的誤差皆在接受范圍內。
綜上所述,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討。在後期,將繼續在這方面做出自己的摸索。