導航:首頁 > 數據行情 > 神經元系統數據清洗概念股票

神經元系統數據清洗概念股票

發布時間:2022-04-27 07:14:12

A. 什麼是神經元

神經元是一種可興奮的神經細胞,其過程稱為軸突和樹突。這些軸突和樹突分別專門用於將信息傳導至神經元的細胞體和從神經元的細胞體傳導信息。盡管具有相似的基本結構,但這些神經元在形狀和大小方面有所不同。軸突和樹突統稱為神經纖維,其主要功能是傳導神經沖動。

溶酶體–它是整個細胞中發現的囊狀結構,可作為細胞的清潔劑。它消化並破壞細胞碎片。它通常被稱為細胞的自殺袋,因為它有助於殺死和破壞細胞中的許多外來有害物質。

高爾基體(Golgi Apparatus)–一種細胞器,看起來像光滑的內質網,具有波浪狀的線狀結構,主要有助於碳水化合物和蛋白質等分子的包裝和運輸。

Nissl物質-這些是粗糙的內質網的顆粒,有助於產生蛋白質。軸突小丘中不存在Nissl物質(軸突小丘是靠近軸突且似乎腫脹的區域)。

B. 神經元和神經系統的關系

神經纖維是多個神經元的軸突和較長的樹突集成一束,外包髓鞘形成的。細胞體屬於神經元的結構之一(包括細胞體,軸突,樹突)

C. 清洗和校正數據質量缺陷的主要手段有哪些

摘要 web數據集成技術可以從web上自動獲取數據,但是獲取的信息存在著大量的臟數據,比如濫用縮寫詞,慣用語,數據輸入錯誤,重復記錄,丟失值,拼寫變化,不同的計量單位。這些數據是沒有意義的,根本就不可能為以後的數據挖掘決策分析提供任何支持。

D. 神經元晶體管概念股票有那些

IGBT(),絕緣柵雙極型晶體管

E. 大數據、雲計算、人工智慧之間有什麼樣的關系

雲計算最初的目標是對資源的管理,管理的主要是計算資源,網路資源,存儲資源三個方面。想像你有一大堆的伺服器,交換機,存儲設備,放在你的機房裡面,你最想做的事情就是把這些東西統一的管理起來,最好能達到當別人向你請求分配資源的時候(例如1核1G內存,10G硬碟,1M帶寬的機器),能夠達到想什麼時候要就能什麼時候要,想要多少就有多少的狀態。

這就是所謂的彈性,俗話說就是靈活性。靈活性分兩個方面,想什麼時候要就什麼時候要,這叫做時間靈活性,想要多少就要多少,這叫做空間靈活性。

這個神經元有輸入,有輸出,輸入和輸出之間通過一個公式來表示,輸入根據重要程度不同(權重),影響著輸出。

於是將n個神經元通過像一張神經網路一樣連接在一起,n這個數字可以很大很大,所有的神經元可以分成很多列,每一列很多個排列起來,每個神經元的對於輸入的權重可以都不相同,從而每個神經元的公式也不相同。當人們從這張網路中輸入一個東西的時候,希望輸出一個對人類來講正確的結果。例如上面的例子,輸入一個寫著2的圖片,輸出的列表裡面第二個數字最大,其實從機器來講,它既不知道輸入的這個圖片寫的是2,也不知道輸出的這一系列數字的意義,沒關系,人知道意義就可以了。正如對於神經元來說,他們既不知道視網膜看到的是美女,也不知道瞳孔放大是為了看的清楚,反正看到美女,瞳孔放大了,就可以了。

對於任何一張神經網路,誰也不敢保證輸入是2,輸出一定是第二個數字最大,要保證這個結果,需要訓練和學習。畢竟看到美女而瞳孔放大也是人類很多年進化的結果。學習的過程就是,輸入大量的圖片,如果結果不是想要的結果,則進行調整。如何調整呢,就是每個神經元的每個權重都向目標進行微調,由於神經元和權重實在是太多了,所以整張網路產生的結果很難表現出非此即彼的結果,而是向著結果微微的進步,最終能夠達到目標結果。當然這些調整的策略還是非常有技巧的,需要演算法的高手來仔細的調整。正如人類見到美女,瞳孔一開始沒有放大到能看清楚,於是美女跟別人跑了,下次學習的結果是瞳孔放大一點點,而不是放大鼻孔。

聽起來也沒有那麼有道理,但是的確能做到,就是這么任性。

神經網路的普遍性定理是這樣說的,假設某個人給你某種復雜奇特的函數,f(x):

不管這個函數是什麼樣的,總會確保有個神經網路能夠對任何可能的輸入x,其值f(x)(或者某個能夠准確的近似)是神經網路的輸出。

如果在函數代表著規律,也意味著這個規律無論多麼奇妙,多麼不能理解,都是能通過大量的神經元,通過大量權重的調整,表示出來的。

這讓我想到了經濟學,於是比較容易理解了。

我們把每個神經元當成社會中從事經濟活動的個體。於是神經網路相當於整個經濟社會,每個神經元對於社會的輸入,都有權重的調整,做出相應的輸出,比如工資漲了,菜價也漲了,股票跌了,我應該怎麼辦,怎麼花自己的錢。這裡面沒有規律么?肯定有,但是具體什麼規律呢?卻很難說清楚。

基於專家系統的經濟屬於計劃經濟,整個經濟規律的表示不希望通過每個經濟個體的獨立決策表現出來,而是希望通過專家的高屋建瓴和遠見卓識總結出來。專家永遠不可能知道哪個城市的哪個街道缺少一個賣甜豆腐腦的。於是專家說應該產多少鋼鐵,產多少饅頭,往往距離人民生活的真正需求有較大的差距,就算整個計劃書寫個幾百頁,也無法表達隱藏在人民生活中的小規律。

基於統計的宏觀調控就靠譜的多了,每年統計局都會統計整個社會的就業率,通脹率,GDP等等指標,這些指標往往代表著很多的內在規律,雖然不能夠精確表達,但是相對靠譜。然而基於統計的規律總結表達相對比較粗糙,比如經濟學家看到這些統計數據可以總結出長期來看房價是漲還是跌,股票長期來看是漲還是跌,如果經濟總體上揚,房價和股票應該都是漲的。但是基於統計數據,無法總結出股票,物價的微小波動規律。

基於神經網路的微觀經濟學才是對整個經濟規律最最准確的表達,每個人對於從社會中的輸入,進行各自的調整,並且調整同樣會作為輸入反饋到社會中。想像一下股市行情細微的波動曲線,正是每個獨立的個體各自不斷交易的結果,沒有統一的規律可循。而每個人根據整個社會的輸入進行獨立決策,當某些因素經過多次訓練,也會形成宏觀上的統計性的規律,這也就是宏觀經濟學所能看到的。例如每次貨幣大量發行,最後房價都會上漲,多次訓練後,人們也就都學會了。

然而神經網路包含這么多的節點,每個節點包含非常多的參數,整個參數量實在是太大了,需要的計算量實在太大,但是沒有關系啊,我們有大數據平台,可以匯聚多台機器的力量一起來計算,才能在有限的時間內得到想要的結果。

於是工智能程序作為SaaS平台進入了雲計算。

網易將人工智慧這個強大的技術,應用於反垃圾工作中,從網易1997年推出郵箱產品開始,我們的反垃圾技術就在不停的進化升級,並且成功應用到各個億量級用戶的產品線中,包括影音娛樂,游戲,社交,電商等產品線。比如網易新聞、博客相冊、雲音樂、雲閱讀、有道、BOBO、考拉、游戲等產品。總的來說,反垃圾技術在網易已經積累了19年的實踐經驗,一直在背後默默的為網易產品保駕護航。現在作為雲平台的SaaS服務開放出來。

回顧網易反垃圾技術發展歷程,大致上我們可以把他分為三個關鍵階段,也基本對應著人工智慧發展的三個時期:

第一階段主要是依賴關鍵詞,黑白名單和各種過濾器技術,來做一些內容的偵測和攔截,這也是最基礎的階段,受限於當時計算能力瓶頸以及演算法理論的發展,第一階段的技術也能勉強滿足使用。

第二個階段時,基於計算機行業里有一些更新的演算法,比如說貝葉斯過濾(基於概率論的演算法),一些膚色的識別,紋理的識別等等,這些比較優秀成熟的論文出來,我們可以基於這些演算法做更好的特徵匹配和技術改造,達到更優的反垃圾效果。

最後,隨著人工智慧演算法的進步和計算機運算能力的突飛猛進,反垃圾技術進化到第三個階段:大數據和人工智慧的階段。我們會用海量大數據做用戶的行為分析,對用戶做畫像,評估用戶是一個垃圾用戶還是一個正常用戶,增加用戶體驗更好的人機識別手段,以及對語義文本進行理解。還有基於人工智慧的圖像識別技術,更准確識別是否是色情圖片,廣告圖片以及一些違禁品圖片等等。

F. 神經元參考文獻有哪些啊

醫學神經生物學。。。。。神經科學(中譯本)

神經生物學(神經元到腦)和細胞生物學考研精解一起看吧!也許對你有幫助!
內容簡介
本書是神經生物學領域內的一本世界級名著,本版為跨世紀的第4版。內容涵蓋了神經生物學的許多重要方面,系統介紹了神經生物學的基本概念、神經系統的功能及其細胞和分子機制。作者應用許多生動的實例,通過嚴密的邏輯組織起來,以展示神經生物學的發展脈絡。結合300餘幅製作精良的插圖,為讀者提供了這門重要學科的一幅有內在聯系的全景圖。全書把神經生物學的基本原理和近年進展緊密結合起來,文筆流暢,深入淺出,對相關領域的學生、教授和研究人員均是一本有用的參考書。

作者簡介
J.G.尼克爾斯(John G.Nicholls)義大利Trieste國際高級研究院生物物理學教授。1929年生於倫敦,在Charing Cross醫院獲醫學學位,後在倫敦大學生物物理系Bernard Katz爵士指導下進行研究,獲生理學博士。他曾在倫敦大學院、牛津大學、哈佛大學、耶魯大學、斯坦福大學及瑞士Basel生物研究中心工作。與S.庫福樂一起進行了有關神經膠質細胞的實驗,並撰寫了本書的第一版。他是英國皇家學會會員、墨西哥醫學科學院院士,曾獲委內瑞拉Andres Bello勛章,曾在美國伍茨霍爾、冷泉港,以及許多國家的大學中開設過神經生物學的理論和實驗課程,這些畫家包括阿根廷、澳大利亞、馬西、智利、中國、印度、以色列、馬來西亞、墨西哥、奈及利亞、菲律賓、斯里蘭卡、烏拉圭和委內瑞拉。他的研究工作專注於神經系統損傷後的再生,最初是對無脊椎動物水蛭進行研究,現在則是以未成熟的哺乳動物脊髓為標本。

目錄
第一章 信號運作和組夠原理
第二章 離子通道和信號傳遞
第三章 離子通道的結構
第四章 跨細胞膜轉運
第五章 靜息膜電位的離子基礎
第六章 動作電位的離子基礎
第七章 神經元作為電導體
第八章 神經膠質細胞的特性與功能
第九章 直接性突觸傳遞的原理
第十章 突觸傳遞的間接機制
第十一章 遞質的釋放
第十二章 突觸可塑性
第十三章 突觸傳遞的細胞和分子生化機制
第十四章 中樞神經系統遞質
第十五章 水蛭、螞蟻和蜜蜂中整合和行為的細胞機制
第十六章 自主神經系統
第十七章 機械和化學刺激的轉導
第十八章 軀體感覺和聽覺信號的處理
第十九章 視網膜的信號轉導和加工
第二十章 外膝核和初級視皮層的信號處理
第二十一章 視皮層的功能構築
第二十二章 運動控制的細胞機制
第二十三章 神經系統的發育
第二十四章 突觸連接的去神經支配和再生
第二十五章 視覺及聽覺系統的關鍵期
第二十六章 懸而未決的問題
附錄A 電路中的電流
附錄B 低分子質量遞質合成及失活的代謝途徑
附錄C 腦的結構和通路

G. 關於人體神經網路的疑問,每個神經元能承受整個神經網路的信息嗎

病情分析:我們現在的通用型計算機採用的諾伊曼結構的,其指令順序執行的模式與生物神經網路有很大不同,導致其結果也很大差異,

比如計算機在數值計算領域超過人很多,而在認知類問題上卻沒有超過那麼多,甚至不如人類;

通用計算機沒有一個通用的演算法負責處理所有的事情,而人類的大腦卻能對付所有的事情

所以對於神經系統運行方式的思考從馮那個時代就開始了,當然人類的知識有很多積累,對於神經元間信息傳遞的問題,有海量的資料可以閱讀。

而你如果關心的是分子生物級別的事情,在這個問題上,國內的研究有很多都是猜測,或者搬抄國外的資料,有誰剝離出一組神經元出來進行研究了呢?

意見建議:

H. 人工神經網路概念梳理與實例演示

人工神經網路概念梳理與實例演示
神經網路是一種模仿生物神經元的機器學習模型,數據從輸入層進入並流經激活閾值的多個節點。
遞歸性神經網路一種能夠對之前輸入數據進行內部存儲記憶的神經網路,所以他們能夠學習到數據流中的時間依賴結構。
如今機器學習已經被應用到很多的產品中去了,例如,siri、Google Now等智能助手,推薦引擎——亞馬遜網站用於推薦商品的推薦引擎,Google和Facebook使用的廣告排名系統。最近,深度學習的一些進步將機器學習帶入公眾視野:AlphaGo 打敗圍棋大師李世石事件以及一些圖片識別和機器翻譯等新產品的出現。
在這部分中,我們將介紹一些強大並被普遍使用的機器學習技術。這當然包括一些深度學習以及一些滿足現代業務需求傳統方法。讀完這一系列的文章之後,你就掌握了必要的知識,便可以將具體的機器學習實驗應用到你所在的領域當中。
隨著深層神經網路的精度的提高,語音和圖像識別技術的應用吸引了大眾的注意力,關於AI和深度學習的研究也變得更加普遍了。但是怎麼能夠讓它進一步擴大影響力,更受歡迎仍然是一個問題。這篇文章的主要內容是:簡述前饋神經網路和遞歸神經網路、怎樣搭建一個遞歸神經網路對時間系列數據進行異常檢測。為了讓我們的討論更加具體化,我們將演示一下怎麼用Deeplearning4j搭建神經網路。
一、什麼是神經網路?
人工神經網路演算法的最初構思是模仿生物神經元。但是這個類比很不可靠。人工神經網路的每一個特徵都是對生物神經元的一種折射:每一個節點與激活閾值、觸發的連接。
連接人工神經元系統建立起來之後,我們就能夠對這些系統進行訓練,從而讓他們學習到數據中的一些模式,學到之後就能執行回歸、分類、聚類、預測等功能。
人工神經網路可以看作是計算節點的集合。數據通過這些節點進入神經網路的輸入層,再通過神經網路的隱藏層直到關於數據的一個結論或者結果出現,這個過程才會停止。神經網路產出的結果會跟預期的結果進行比較,神經網路得出的結果與正確結果的不同點會被用來更正神經網路節點的激活閾值。隨著這個過程的不斷重復,神經網路的輸出結果就會無限靠近預期結果。
二、訓練過程
在搭建一個神經網路系統之前,你必須先了解訓練的過程以及網路輸出結果是怎麼產生的。然而我們並不想過度深入的了解這些方程式,下面是一個簡短的介紹。
網路的輸入節點收到一個數值數組(或許是叫做張量多維度數組)就代表輸入數據。例如, 圖像中的每個像素可以表示為一個標量,然後將像素傳遞給一個節點。輸入數據將會與神經網路的參數相乘,這個輸入數據被擴大還是減小取決於它的重要性,換句話說,取決於這個像素就不會影響神經網路關於整個輸入數據的結論。
起初這些參數都是隨機的,也就是說神經網路在建立初期根本就不了解數據的結構。每個節點的激活函數決定了每個輸入節點的輸出結果。所以每個節點是否能夠被激活取決於它是否接受到足夠的刺激強度,即是否輸入數據和參數的結果超出了激活閾值的界限。
在所謂的密集或完全連接層中,每個節點的輸出值都會傳遞給後續層的節點,在通過所有隱藏層後最終到達輸出層,也就是產生輸入結果的地方。在輸出層, 神經網路得到的最終結論將會跟預期結論進行比較(例如,圖片中的這些像素代表一隻貓還是狗?)。神經網路猜測的結果與正確結果的計算誤差都會被納入到一個測試集中,神經網路又會利用這些計算誤差來不斷更新參數,以此來改變圖片中不同像素的重要程度。整個過程的目的就是降低輸出結果與預期結果的誤差,正確地標注出這個圖像到底是不是一條狗。
深度學習是一個復雜的過程,由於大量的矩陣系數需要被修改所以它就涉及到矩陣代數、衍生品、概率和密集的硬體使用問題,但是用戶不需要全部了解這些復雜性。
但是,你也應該知道一些基本參數,這將幫助你理解神經網路函數。這其中包括激活函數、優化演算法和目標函數(也稱為損失、成本或誤差函數)。
激活函數決定了信號是否以及在多大程度上應該被發送到連接節點。階梯函數是最常用的激活函數, 如果其輸入小於某個閾值就是0,如果其輸入大於閾值就是1。節點都會通過階梯激活函數向連接節點發送一個0或1。優化演算法決定了神經網路怎麼樣學習,以及測試完誤差後,權重怎麼樣被更准確地調整。最常見的優化演算法是隨機梯度下降法。最後, 成本函數常用來衡量誤差,通過對比一個給定訓練樣本中得出的結果與預期結果的不同來評定神經網路的執行效果。
Keras、Deeplearning4j 等開源框架讓創建神經網路變得簡單。創建神經網路結構時,需要考慮的是怎樣將你的數據類型匹配到一個已知的被解決的問題,並且根據你的實際需求來修改現有結構。
三、神經網路的類型以及應用
神經網路已經被了解和應用了數十年了,但是最近的一些技術趨勢才使得深度神經網路變得更加高效。
GPUs使得矩陣操作速度更快;分布式計算結構讓計算能力大大增強;多個超參數的組合也讓迭代的速度提升。所有這些都讓訓練的速度大大加快,迅速找到適合的結構。
隨著更大數據集的產生,類似於ImageNet 的大型高質量的標簽數據集應運而生。機器學習演算法訓練的數據越大,那麼它的准確性就會越高。
最後,隨著我們理解能力以及神經網路演算法的不斷提升,神經網路的准確性在語音識別、機器翻譯以及一些機器感知和面向目標的一些任務等方面不斷刷新記錄。
盡管神經網路架構非常的大,但是主要用到的神經網路種類也就是下面的幾種。
3.1前饋神經網路
前饋神經網路包括一個輸入層、一個輸出層以及一個或多個的隱藏層。前饋神經網路可以做出很好的通用逼近器,並且能夠被用來創建通用模型。
這種類型的神經網路可用於分類和回歸。例如,當使用前饋網路進行分類時,輸出層神經元的個數等於類的數量。從概念上講, 激活了的輸出神經元決定了神經網路所預測的類。更准確地說, 每個輸出神經元返回一個記錄與分類相匹配的概率數,其中概率最高的分類將被選為模型的輸出分類。
前饋神經網路的優勢是簡單易用,與其他類型的神經網路相比更簡單,並且有一大堆的應用實例。
3.2卷積神經網路
卷積神經網路和前饋神經網路是非常相似的,至少是數據的傳輸方式類似。他們結構大致上是模仿了視覺皮層。卷積神經網路通過許多的過濾器。這些過濾器主要集中在一個圖像子集、補丁、圖塊的特徵識別上。每一個過濾器都在尋找不同模式的視覺數據,例如,有的可能是找水平線,有的是找對角線,有的是找垂直的。這些線條都被看作是特徵,當過濾器經過圖像時,他們就會構造出特徵圖譜來定位各類線是出現在圖像的哪些地方。圖像中的不同物體,像貓、747s、榨汁機等都會有不同的圖像特徵,這些圖像特徵就能使圖像完成分類。卷積神經網路在圖像識別和語音識別方面是非常的有效的。
卷積神經網路與前饋神經網路在圖像識別方面的異同比較。雖然這兩種網路類型都能夠進行圖像識別,但是方式卻不同。卷積神經網路是通過識別圖像的重疊部分,然後學習識別不同部分的特徵進行訓練;然而,前饋神經網路是在整張圖片上進行訓練。前饋神經網路總是在圖片的某一特殊部分或者方向進行訓練,所以當圖片的特徵出現在其他地方時就不會被識別到,然而卷積神經網路卻能夠很好的避免這一點。
卷積神經網路主要是用於圖像、視頻、語音、聲音識別以及無人駕駛的任務。盡管這篇文章主要是討論遞歸神經網路的,但是卷積神經網路在圖像識別方面也是非常有效的,所以很有必要了解。
3.3遞歸神經網路
與前饋神經網路不同的是,遞歸神經網路的隱藏層的節點里有內部記憶存儲功能,隨著輸入數據的改變而內部記憶內容不斷被更新。遞歸神經網路的結論都是基於當前的輸入和之前存儲的數據而得出的。遞歸神經網路能夠充分利用這種內部記憶存儲狀態處理任意序列的數據,例如時間序列。
遞歸神經網路經常用於手寫識別、語音識別、日誌分析、欺詐檢測和網路安全。
遞歸神經網路是處理時間維度數據集的最好方法,它可以處理以下數據:網路日誌和伺服器活動、硬體或者是醫療設備的感測器數據、金融交易、電話記錄。想要追蹤數據在不同階段的依賴和關聯關系需要你了解當前和之前的一些數據狀態。盡管我們通過前饋神經網路也可以獲取事件,隨著時間的推移移動到另外一個事件,這將使我們限制在對事件的依賴中,所以這種方式很不靈活。
追蹤在時間維度上有長期依賴的數據的更好方法是用內存來儲存重要事件,以使近期事件能夠被理解和分類。遞歸神經網路最好的一點就是在它的隱藏層裡面有「內存」可以學習到時間依賴特徵的重要性。
接下來我們將討論遞歸神經網路在字元生成器和網路異常檢測中的應用。遞歸神經網路可以檢測出不同時間段的依賴特徵的能力使得它可以進行時間序列數據的異常檢測。
遞歸神經網路的應用
網路上有很多使用RNNs生成文本的例子,遞歸神經網路經過語料庫的訓練之後,只要輸入一個字元,就可以預測下一個字元。下面讓我們通過一些實用例子發現更多RNNs的特徵。
應用一、RNNs用於字元生成
遞歸神經網路經過訓練之後可以把英文字元當做成一系列的時間依賴事件。經過訓練後它會學習到一個字元經常跟著另外一個字元(「e」經常跟在「h」後面,像在「the、he、she」中)。由於它能預測下一個字元是什麼,所以它能有效地減少文本的輸入錯誤。
Java是個很有趣的例子,因為它的結構包括很多嵌套結構,有一個開的圓括弧必然後面就會有一個閉的,花括弧也是同理。他們之間的依賴關系並不會在位置上表現的很明顯,因為多個事件之間的關系不是靠所在位置的距離確定的。但是就算是不明確告訴遞歸神經網路Java中各個事件的依賴關系,它也能自己學習了解到。
在異常檢測當中,我們要求神經網路能夠檢測出數據中相似、隱藏的或許是並不明顯的模式。就像是一個字元生成器在充分地了解數據的結構後就會生成一個數據的擬像,遞歸神經網路的異常檢測就是在其充分了解數據結構後來判斷輸入的數據是不是正常。
字元生成的例子表明遞歸神經網路有在不同時間范圍內學習到時間依賴關系的能力,它的這種能力還可以用來檢測網路活動日誌的異常。
異常檢測能夠使文本中的語法錯誤浮出水面,這是因為我們所寫的東西是由語法結構所決定的。同理,網路行為也是有結構的,它也有一個能夠被學習的可預測模式。經過在正常網路活動中訓練的遞歸神經網路可以監測到入侵行為,因為這些入侵行為的出現就像是一個句子沒有標點符號一樣異常。
應用二、一個網路異常檢測項目的示例
假設我們想要了解的網路異常檢測就是能夠得到硬體故障、應用程序失敗、以及入侵的一些信息。
模型將會向我們展示什麼呢?
隨著大量的網路活動日誌被輸入到遞歸神經網路中去,神經網路就能學習到正常的網路活動應該是什麼樣子的。當這個被訓練的網路被輸入新的數據時,它就能偶判斷出哪些是正常的活動,哪些是被期待的,哪些是異常的。
訓練一個神經網路來識別預期行為是有好處的,因為異常數據不多,或者是不能夠准確的將異常行為進行分類。我們在正常的數據里進行訓練,它就能夠在未來的某個時間點提醒我們非正常活動的出現。
說句題外話,訓練的神經網路並不一定非得識別到特定事情發生的特定時間點(例如,它不知道那個特殊的日子就是周日),但是它一定會發現一些值得我們注意的一些更明顯的時間模式和一些可能並不明顯的事件之間的聯系。
我們將概述一下怎麼用 Deeplearning4j(一個在JVM上被廣泛應用的深度學習開源資料庫)來解決這個問題。Deeplearning4j在模型開發過程中提供了很多有用的工具:DataVec是一款為ETL(提取-轉化-載入)任務准備模型訓練數據的集成工具。正如Sqoop為Hadoop載入數據,DataVec將數據進行清洗、預處理、規范化與標准化之後將數據載入到神經網路。這跟Trifacta』s Wrangler也相似,只不過它更關注二進制數據。
開始階段
第一階段包括典型的大數據任務和ETL:我們需要收集、移動、儲存、准備、規范化、矢量話日誌。時間跨度的長短是必須被規定好的。數據的轉化需要花費一些功夫,這是由於JSON日誌、文本日誌、還有一些非連續標注模式都必須被識別並且轉化為數值數組。DataVec能夠幫助進行轉化和規范化數據。在開發機器學習訓練模型時,數據需要分為訓練集和測試集。
訓練神經網路
神經網路的初始訓練需要在訓練數據集中進行。
在第一次訓練的時候,你需要調整一些超參數以使模型能夠實現在數據中學習。這個過程需要控制在合理的時間內。關於超參數我們將在之後進行討論。在模型訓練的過程中,你應該以降低錯誤為目標。
但是這可能會出現神經網路模型過度擬合的風險。有過度擬合現象出現的模型往往會在訓練集中的很高的分數,但是在遇到新的數據時就會得出錯誤結論。用機器學習的語言來說就是它不夠通用化。Deeplearning4J提供正則化的工具和「過早停止」來避免訓練過程中的過度擬合。
神經網路的訓練是最花費時間和耗費硬體的一步。在GPUs上訓練能夠有效的減少訓練時間,尤其是做圖像識別的時候。但是額外的硬體設施就帶來多餘的花銷,所以你的深度學習的框架必須能夠有效的利用硬體設施。Azure和亞馬遜等雲服務提供了基於GPU的實例,神經網路還可以在異構集群上進行訓練。
創建模型
Deeplearning4J提供ModelSerializer來保存訓練模型。訓練模型可以被保存或者是在之後的訓練中被使用或更新。
在執行異常檢測的過程中,日誌文件的格式需要與訓練模型一致,基於神經網路的輸出結果,你將會得到是否當前的活動符合正常網路行為預期的結論。
代碼示例
遞歸神經網路的結構應該是這樣子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解釋一下幾行重要的代碼:
.seed(123)
隨機設置一個種子值對神經網路的權值進行初始化,以此獲得一個有復驗性的結果。系數通常都是被隨機的初始化的,以使我們在調整其他超參數時仍獲得一致的結果。我們需要設定一個種子值,讓我們在調整和測試的時候能夠用這個隨機的權值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
決定使用哪個最優演算法(在這個例子中是隨機梯度下降法)來調整權值以提高誤差分數。你可能不需要對這個進行修改。
.learningRate(0.005)
當我們使用隨機梯度下降法的時候,誤差梯度就被計算出來了。在我們試圖將誤差值減到最小的過程中,權值也隨之變化。SGD給我們一個讓誤差更小的方向,這個學習效率就決定了我們該在這個方向上邁多大的梯度。如果學習效率太高,你可能是超過了誤差最小值;如果太低,你的訓練可能將會永遠進行。這是一個你需要調整的超參數。

I. 什麼叫神經元它的基本功能是什麼

神經細胞是高等動物神經系統的結構單位和功能單位,又被稱為神經元(neuron)
神經元的基本功能是通過接受、整合、傳導和輸出信息實現信息交換

閱讀全文

與神經元系統數據清洗概念股票相關的資料

熱點內容
股票阻力線指標 瀏覽:682
高送轉股票是條件 瀏覽:459
投資1萬股票虧2000 瀏覽:261
股票的資金面怎樣分析 瀏覽:885
怎麼看股票現金頭寸 瀏覽:869
股票每日數據介面 瀏覽:725
芒格降低股票投資風險的方法 瀏覽:705
邁瑞醫療股票診斷手機版 瀏覽:548
中國汽研股票成交量 瀏覽:474
股票戴st帽子後多久才能撤銷 瀏覽:904
滿足某條件的股票個數統計 瀏覽:765
蘇都銀行股票行情 瀏覽:192
中國南玻集團股票代碼 瀏覽:800
股票怎麼樣才退市 瀏覽:340
中國股票是假牛市 瀏覽:782
投資股票怎麼看收益 瀏覽:221
2019永輝股票適合長期持有嗎 瀏覽:472
天瑞投資專業短線股票 瀏覽:71
股票投資切點組合和有效集 瀏覽:459
股票k線3峰是什麼意思 瀏覽:509