❶ 單個股票的期望收益率
…… 這怎麼可能查得到,都是通過公式模型計算的。
期望收益率,又稱為持有期收益率(HPR)指投資者持有一種理財產品或投資組合期望在下一個時期所能獲得的收益率。這僅僅是一種期望值,實際收益很可能偏離期望收益。
計算公式:HPR=(期末價格-期初價格+現金股息)/期初價格
方差在統計描述和概率分布中各有不同的定義,並有不同的公式。
在統計描述中,方差用來計算每一個變數(觀察值)與總體均數之間的差異。為避免出現離均差總和為零,離均差平方和受樣本含量的影響,統計學採用平均離均差平方和來描述變數的變異程度。
標准差(StandardDeviation),在概率統計中最常使用作為統計分布程度(statisticaldispersion)上的測量。標准差定義是總體各單位標准值與其平均數離差平方的算術平均數的平方根。它反映組內個體間的離散程度。
用XLS的操作步驟
1
我們隨便選擇六隻股票和上證綜指從2010年8月31日至2015年5月13日的日度收盤價數據,如圖所示。
❷ 某一股票的預期收益率為%16,β系數為1.2,無風險收益率為%5,市場的預期收益率是多少
由CAPM模型:E(Rp)=Rf+β([(RM)-Rf]
可知 16%=5%+1.2(Rm-5%)
可得市場收益率Rm=14.17%
❸ 股票的預期收益率和方差怎麼算
具體我也不太清楚,所以幫你搜了一下,轉發給你看,希望能幫到你!
例子:
上面兩個資產的預期收益率和風險根據前面所述均值和方差的公式可以計算如下:
1。股票基金
預期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11%
方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05%
標准差=14.3%(標准差為方差的開根,標准差的平方是方差)
2。債券基金
預期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7%
方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67%
標准差=8.2%
注意到,股票基金的預期收益率和風險均高於債券基金。然後我們來看股票基金和債券基金各佔百分之五十的投資組合如何平衡風險和收益。投資組合的預期收益率和方差也可根據以上方法算出,先算出投資組合在三種經濟狀態下的預期收益率,如下:
蕭條:50%*(-7%)+50%*17%=5%
正常:50%*(12%)+50%*7%=9.5%
繁榮:50%*(28%)+50%*(-3%)=12.5%
則該投資組合的預期收益率為:1/3*5%+1/3*9.5%+1/3*12.5%=9%
該投資組合的方差為:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001%
該投資組合的標准差為:3.08%
注意到,其中由於分散投資帶來的風險的降低。一個權重平均的組合(股票和債券各佔百分之五十)的風險比單獨的股票或債券的風險都要低。
投資組合的風險主要是由資產之間的相互關系的協方差決定的,這是投資組合能夠降低風險的主要原因。相關系數決定了兩種資產的關系。相關性越低,越有可能降低風險。
❹ 某股票的預期收益率為%18,β系數為1.4,市場的預期收益率為14%那麼無風險收益率是多少
β系數也稱為貝他系數(Beta coefficient),是一種風險指數,用來衡量個別股票或股票基金相對於整個股市的價格波動情況。β系數是一種評估證券系統性風險的工具,用以度量一種證券或一個投資證券組合相對總體市場的波動性,在股票、基金等投資術語中常見。
貝塔系數衡量股票收益相對於業績評價基準收益的總體波動性,是一個相對指標。 β 越高,意味著股票相對於業績評價基準的波動性越大。 β 大於 1 ,則股票的波動性大於業績評價基準的波動性。反之亦然。 如果 β 為 1 ,則市場上漲 10 %,股票上漲 10 %;市場下滑 10 %,股票相應下滑 10 %。如果 β 為 1.1, 市場上漲 10 %時,股票上漲 11%, ;市場下滑 10 %時,股票下滑 11% 。如果 β 為 0.9, 市場上漲 10 %時,股票上漲 9% ;市場下滑 10 %時,股票下滑 9% 。
根據這個,你自己可以看一下,你的這個問法好像不怎麼准確,投資市場永遠存在風險,即時風險指數趨向於0,也是存在風險的。但是,市場還是會對他的價值有一個共識,所以,我的判斷是根據較低的收益率*80%,這個結果的利潤應該能夠拿到手的。
還有什麼問題,咱們可以一起在共同探討!
❺ 一隻股票的貝塔系數是1.3,市場的期望收益率是14%,無風險利率是5%。這只股票的預期風險必須是多少
設合理價格為x
預期要求收益率=(1000-x)/x=無風險收益率10%+貝塔系數0.6*(17%-10%)
算出來x=876
很簡單的呵呵
❻ 股票,期望收益率,方差,均方差的計算公式
1、期望收益率計算公式:
HPR=(期末價格 -期初價格+現金股息)/期初價格
例:A股票過去三年的收益率為3%、5%、4%,B股票在下一年有30%的概率收益率為10%,40%的概率收益率為5%,另30%的概率收益率為8%。計算A、B兩只股票下一年的預期收益率。
解:
A股票的預期收益率 =(3%+5%+4%)/3 = 4%
B股票的預期收益率 =10%×30%+5%×40%+8%×30% = 7.4%
2、在統計描述中,方差用來計算每一個變數(觀察值)與總體均數之間的差異。為避免出現離均差總和為零,離均差平方和受樣本含量的影響,統計學採用平均離均差平方和來描述變數的變異程度。
解:由上面的解題可求X、Y的相關系數為
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
❼ 某股票的價格期望值是1000元,其貝塔系數為0.6,無風險利率為10%,全市場組合的預期收益率為17%.
設合理價格為x
預期要求收益率=(1000-x)/x=無風險收益率10%+貝塔系數0.6*(17%-10%)
算出來x=876 很簡單的呵呵
❽ 計算股票預期收益率和股票的內在價值
下期支付股利=1.5*(1+0.06%)=1.59
預期收益率=3%+2*(10%-3%)=17%
股票價值=1.59/(17%-6%)=14.4545
❾ 如何計算證券的期望收益率期望收益率跟什麼因素有關
證券主要包括股票和債券。股票收益率計算不得不首先介紹一下資本資產定價模型(CAPM);債券收益率計算方法比較多。
一、資本資產定價模型(CAPM)
資本資產定價模型(CAPM)是建立在馬科維茨資產組合理論基礎上。資本資產定價模型核心思想是將風險分為兩大類,一類是系統性風險(也可稱為不可分散風險、市場風險),另一類是非系統性風險(也可稱為可分散風險、公司特有風險)。系統性風險無法通過分散化(Diversification)分散,而非系統性風險可以通過分散化投資策略完全分散。由於“風險越高,收益越高”,因此對於資產系統性風險需要通過風險溢價(premium)形式進行補償,而非系統性風險不需要進行補償。CAPM模型基本公式是:
需要注意的是,以上方法是一個粗略的計算方法,其他更為精確的方法包括利差法等可以自行學習。