『壹』 非平穩時間序列可以預測股票走勢嗎
一般把非平穩時間序列轉化為平穩時間序列的方法是取n階差分法。
比如舉個例子,假設xt本身是不平穩的時間序列,如果xt~I(1) ,也就是說x的1階差分是平穩序列。
那麼 xt的1階差分dxt=x(t)-x(t-1) 就是平穩的序列 這時dt=x(t-1)
如果xt~I(2),就是說xt的2階差分是平穩序列的話
xt的1n階差分dxt=x(t)-x(t-1) 這時xt的1階差分依然不平穩,
那麼 對xt的1階差分再次差分後,
xt的2階差分ddxt=dxt-dxt(t-1)便是平穩序列 這時dt=-x(t-1)-dxt(t-1)
n階的話可以依次類推一下。
『貳』 度量股票市場的波動性有哪些常見方法
1.首先你要知道股票的數據是時間序列數據。
經研究表明,股票數據是有自相關性的,所以古典的回歸模型擬合常常是無效的。
2.另外股票數據序列是具有平穩性,或一階差分、高階差分平穩性
所以一般來說都會採用平穩性時間序列模型。
簡單的如AR(p), MA(q), ARMA(p,q)模型等。
3.但由於這些數據往往還有條件異方差性。進一步的模型修正
有ARCH(p) , GARCH(p,q)等模型。
3中的模型是現今一些研究股票波動的主流手段的基礎。
4.如果要研究多支股票波動的聯合分布,可以用Copula理論進行建模(這個一般用於VaR,ES風險度量,比較前沿,國內90年代才開始引進,但並不算太難)
5.另外還有一些非實證的手段,那是搞數學的弄的了
『叄』 如何深入理解時間序列分析中的平穩性
聲明:本文中所有引用部分,如非特別說明,皆引自Time Series Analysis with Applications in R.
接觸時間序列分析才半年,盡力回答。如果回答有誤,歡迎指出。
對第一個問題,我們把它拆分成以下兩個問題:
Why stationary?(為何要平穩?)
Why weak stationary?(為何弱平穩?)
Why stationary?(為何要平穩?)
每一個統計學問題,我們都需要對其先做一些基本假設。如在一元線性回歸中(),我們要假設:①不相關且非隨機(是固定值或當做已知)②獨立同分布服從正態分布(均值為0,方差恆定)。
在時間序列分析中,我們考慮了很多合理且可以簡化問題的假設。而其中最重要的假設就是平穩。
The basic idea of stationarity is that the probability laws that govern the behavior of the process do not change over time.
平穩的基本思想是:時間序列的行為並不隨時間改變。
正因此,我們定義了兩種平穩:
Strict stationarity: A time series {} is said to be strictly stationary if the joint distribution of ,, · · ·, is the same as that of,, · · · ,for all choices of natural number n, all choices of time points ,, · · · , and all choices of time lag k.
強平穩過程:對於所有可能的n,所有可能的,, · · · , 和所有可能的k,當,, · · ·,的聯合分布與,, · · · ,相同時,我們稱其強平穩。
Weak stationarity: A time series {} is said to be weakly (second-order, or co-variance) stationary if:
① the mean function is constant over time, and
② γ(t, t − k) = γ(0, k) for all times t and lags k.
弱平穩過程:當①均值函數是常數函數且②協方差函數僅與時間差相關,我們才稱其為弱平穩。
此時我們轉到第二個問題:Why weak stationary?(為何弱平穩?)
我們先來說說兩種平穩的差別:
兩種平穩過程並沒有包含關系,即弱平穩不一定是強平穩,強平穩也不一定是弱平穩。
一方面,雖然看上去強平穩的要求好像比弱平穩強,但強平穩並不一定是弱平穩,因為其矩不一定存在。
例子:{}獨立服從柯西分布。{}是強平穩,但由於柯西分布期望與方差不存在,所以不是弱平穩。(之所以不存在是因為其並非絕對可積。)
另一方面,弱平穩也不一定是強平穩,因為二階矩性質並不能確定分布的性質。
例子:,,互相獨立。這是弱平穩卻不是強平穩。
知道了這些造成差別的根本原因後,我們也可以寫出兩者的一些聯系:
一階矩和二階矩存在時,強平穩過程是弱平穩過程。(條件可簡化為二階矩存在,因為)
當聯合分布服從多元正態分布時,兩平穩過程等價。(多元正態分布的二階矩可確定分布性質)
而為什麼用弱平穩而非強平穩,主要原因是:強平穩條件太強,無論是從理論上還是實際上。
理論上,證明一個時間序列是強平穩的一般很難。正如定義所說,我們要比較,對於所有可能的n,所有可能的,, · · · , 和所有可能的k,當,, · · ·,的聯合分布與,, · · · ,相同。當分布很復雜的時候,不僅很難比較所有可能性,也可能很難寫出其聯合分布函數。
實際上,對於數據,我們也只能估算出它們均值和二階矩,我們沒法知道它們的分布。所以我們在以後的模型構建和預測上都是在用ACF,這些性質都和弱項和性質有關。而且,教我時間序列教授說過:"General linear process(weak stationarity, linearity, causality) covers about 10% of the real data." ,如果考慮的是強平穩,我覺得可能連5%都沒有了。
對第二個問題:
教授有天在審本科畢業論文,看到一個寫金融的,用平穩時間序列去估計股票走勢(真不知這老兄怎麼想的)。當時教授就說:「金融領域很多東西之所以難以估計,就是因為其經常突變,根本就不是平穩的。」
果不其然,論文最後實踐階段,對於股票選擇的正確率在40%。連期望50%都不到(任意一點以後要麼漲要麼跌)。
暑假裡自己用了一些時間序列的方法企圖開發程序性交易程序。
剛開始收益率還好,越往後就越...後面直接虧損了...(軟體是金字塔,第二列是利潤率)
虧損的圖當時沒截,現在也沒法補了,程序都刪了。
所以應該和平穩沒關系吧,畢竟我的做法也沒假設是平穩的。如果平穩我就不會之後不盈利了。
(吐槽)自己果然不適合做股票、期貨什麼的...太高端理解不能...
以上