‘壹’ 什么是股票分形理论
分形理论是用来分析股票走势数据的,分形方法是一个可以处理非线性时间序列的数据处理工具,而股票就是其中应用之一。
分形方法具有分析、预测非线性时间序列的作用,是通过分析时间序列中时间点数据的复杂程度来讨论数据非线性特性的,当下比较前沿。
‘贰’ 时间序列在股市有哪些应用
时间序列分析在股票市场中的应用
摘要
在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报,这极大促进了股票市场的繁荣。而在这种投资行为的背后,越来越多的投资者逐渐意识到股市预测的重要性。
所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的。但是在股票市场中,行情的变化与国家的宏观经济发展、法律法规的制定、公司的运营、股民的信心等等都有关联,因此所谓的预测难于准确预计。
时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理管理方提供决策依据。
‘叁’ 如何用Arma模型做股票估计
时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显着检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显着水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。
‘肆’ 2020年年度国内股票分析的基本方法有哪些
国内股票分析的基本方法:
1、K线图切线分析
切线分析是指按一定的方法和原则,在由股票价格的数据所绘制的图表中画出一条直线,然后根据这些直线的情况推测出证券价格的未来趋势。这些直线就称为切线。切线主要起支撑和压力的作用,支撑线和压力线向后的延伸位置对价格的波动起到一定的制约作用。
目前,画切线的方法有很多种,着名的有趋势线、通道线、黄金分割线、速度线等。
2、通道线形态分析
形态分析是根据价格图表中过去一段时间走过的轨迹形态来预测股票价格未来趋势的方法。在技术分析假设中,市场行为涵盖一切信息。价格走过的形态是市场行为的重要组成部分,是证券市场对各种信息感受之后的具体表现。
从价格轨迹的形态,我们可以推测出市场处于什么样的大的环境中,由此对我们今后的行为给予一定的指导。价格轨迹的形态有M头、W底、头肩顶、头肩底等。
(4)股票时间序列分析数据差异的方法扩展阅读:
前提条件
1、市场行为包容消化一切
技术分析者认为,能够影响某种证券价格的任何因素(不管是宏观的或是微观的)都反映在其证券的价格之中。研究影响证券价格的因素对普通投资者来说是不可能实现的,即使是经济学家对市场的分析也是不确定的。
因此,研究证券的价格就是间接的研究影响证券价格的经济基础。技术分析者通过研究价格图表和大量的辅助技术指标,让市场自己揭示它最可能的走势。
2、价格以趋势方式演变。
技术分析者通过经验的总结,认为证券的价格运动是以趋势方式演变的。研究价格图表的全部意义,就是要在一个趋势发生发展的早期,及时准确地把它揭示出来,从而达到顺应趋势交易的目的。
正是因为有趋势的存在,技术分析者通过对图表、指标的研究,发现趋势的即将发展的方向,从而确定买入和卖出股票的时机。
‘伍’ 时间序列分析方法
时间序列是指一组在连续时间上测得的数据,其在数学上的定义是一组向量x(t), t=0,1,2,3,...,其中t表示数据所在的时间点,x(t)是一组按时间顺序(测得)排列的随机变量。包含单个变量的时间序列称为单变量时间序列,而包含多个变量的时间序列则称为多变量。
时间序列在很多方面多有涉及到,如天气预报,每天每个小时的气温,股票走势等等,在商业方面有诸多应用,如:
下面我们将通过一个航班数据来说明如何使用已有的工具来进行时间序列数据预测。常用来处理时间序列的包有三个:
对于基于AR、MA的方法一般需要数据预处理,因此本文分为三部分:
通过简单的初步处理以及可视化可以帮助我们有效快速的了解数据的分布(以及时间序列的趋势)。
观察数据的频率直方图以及密度分布图以洞察数据结构,从下图可以看出:
使用 statsmodels 对该时间序列进行分解,以了解该时间序列数据的各个部分,每个部分都代表着一种模式类别。借用 statsmodels 序列分解我们可以看到数据的主要趋势成分、季节成分和残差成分,这与我们上面的推测相符合。
如果一个时间序列的均值和方差随着时间变化保持稳定,则可以说这个时间序列是稳定的。
大多数时间序列模型都是在平稳序列的前提下进行建模的。造成这种情况的主要原因是序列可以有许多种(复杂的)非平稳的方式,而平稳性只有一种,更加的易于分析,易于建模。
在直觉上,如果一段时间序列在某一段时间序列内具有特定的行为,那么将来很可能具有相同的行为。譬如已连续观察一个星期都是六点出太阳,那么可以推测明天也是六点出太阳,误差非常小。
而且,与非平稳序列相比,平稳序列相关的理论更加成熟且易于实现。
一般可以通过以下几种方式来检验序列的平稳性:
如果时间序列是平稳性的,那么在ACF/PACF中观测点数据与之前数据点的相关性会急剧下降。
下图中的圆锥形阴影是置信区间,区间外的数据点说明其与观测数据本身具有强烈的相关性,这种相关性并非来自于统计波动。
PACF在计算X(t)和X(t-h)的相关性的时候,挖空在(t-h,t)上所有数据点对X(t)的影响,反应的是X(t)和X(t-h)之间真实的相关性(直接相关性)。
从下图可以看出,数据点的相关性并没有急剧下降,因此该序列是非平稳的。
如果序列是平稳的,那么其滑动均值/方差会随着时间的变化保持稳定。
但是从下图我们可以看到,随着时间的推移,均值呈现明显的上升趋势,而方差也呈现出波动式上升的趋势,因此该序列是非平稳的。
一般来讲p值小于0.05我们便认为其是显着性的,可以拒绝零假设。但是这里的p值为0.99明显是非显着性的,因此接受零假设,该序列是非平稳的。
从上面的平稳性检验我们可以知道该时间序列为非平稳序列。此外,通过上面1.3部分的序列分解我们也可以看到,该序列可分解为3部分:
我们可以使用数据转换来对那些较大的数据施加更大的惩罚,如取对数、开平方根、立方根、差分等,以达到序列平稳的目的。
滑动平均后数据失去了其原来的特点(波动式上升),这样损失的信息过多,肯定是无法作为后续模型的输入的。
差分是常用的将非平稳序列转换平稳序列的方法。ARIMA中的 'I' 便是指的差分,因此ARIMA是可以对非平稳序列进行处理的,其相当于先将非平稳序列通过差分转换为平稳序列再来使用ARMA进行建模。
一般差分是用某时刻数值减去上一时刻数值来得到新序列。但这里有一点区别,我们是使用当前时刻数值来减去其对应时刻的滑动均值。
我们来看看刚刚差分的结果怎么样。
让我们稍微总结下我们刚刚的步骤:
通过上面的3步我们成功的将一个非平稳序列转换成了一个平稳序列。上面使用的是最简单的滑动均值,下面我们试试指数滑动平均怎么样。
上面是最常用的指数滑动平均的定义,但是pandas实现的指数滑动平均好像与这个有一点区别,详细区别还得去查pandas文档。
指数滑动均值的效果看起来也很差。我们使用差分+指数滑动平均再来试试吧。
在上面我们通过 取log+(指数)滑动平均+差分 已经成功将非平稳序列转换为了平稳序列。
下面我们看看,转换后的平稳序列的各个成分是什么样的。不过这里我们使用的是最简单的差分,当前时刻的值等于原始序列当前时刻的值减去原始序列中上一时刻的值,即: x'(t) = x(t) - x(t-1)。
看起来挺不错,是个平稳序列的样子。不过,还是检验一下吧。
可以看到,趋势(Trend)部分已基本被去除,但是季节性(seasonal)部分还是很明显,而ARIMA是无法对含有seasonal的序列进行建模分析的。
在一开始我们提到了3个包均可以对时间序列进行建模。
为了简便,这里 pmdarima 和 statsmodels.tsa 直接使用最好的建模方法即SARIMA,该方法在ARIMA的基础上添加了额外功能,可以拟合seasonal部分以及额外添加的数据。
在使用ARIMA(Autoregressive Integrated Moving Average)模型前,我们先简单了解下这个模型。这个模型其实可以包括三部分,分别对应着三个参数(p, d, q):
因此ARIMA模型就是将AR和MA模型结合起来然后加上差分,克服了不能处理非平稳序列的问题。但是,需要注意的是,其仍然无法对seasonal进行拟合。
下面开始使用ARIMA来拟合数据。
(1) 先分训练集和验证集。需要注意的是这里使用的原始数据来进行建模而非转换后的数据。
(2)ARIMA一阶差分建模并预测
(3)对差分结果进行还原
先手动选择几组参数,然后参数搜索找到最佳值。需要注意的是,为了避免过拟合,这里的阶数一般不太建议取太大。
可视化看看结果怎么样吧。
(6)最后,我们还能对拟合好的模型进行诊断看看结果怎么样。
我们主要关心的是确保模型的残差(resial)部分互不相关,并且呈零均值正态分布。若季节性ARIMA(SARIMA)不满足这些属性,则表明它可以进一步改善。模型诊断根据下面的几个方面来判断残差是否符合正态分布:
同样的,为了方便,我们这里使用 pmdarima 中一个可以自动搜索最佳参数的方法 auto_arima 来进行建模。
一般来说,在实际生活和生产环节中,除了季节项,趋势项,剩余项之外,通常还有节假日的效应。所以,在prophet算法里面,作者同时考虑了以上四项,即:
上式中,
更多详细Prophet算法内容可以参考 Facebook 时间序列预测算法 Prophet 的研究 。
Prophet算法就是通过拟合这几项,然后把它们累加起来得到时间序列的预测值。
Prophet提供了直观且易于调整的参数:
Prophet对输入数据有要求:
关于 Prophet 的使用例子可以参考 Prophet example notebooks
下面使用 Prophet 来进行处理数据。
参考:
Facebook 时间序列预测算法 Prophet 的研究
Prophet example notebooks
auto_arima documentation for selecting best model
数据分析技术:时间序列分析的AR/MA/ARMA/ARIMA模型体系
https://github.com/advaitsave/Introction-to-Time-Series-forecasting-Python
时间序列分析
My First Time Series Comp (Added Prophet)
Prophet官方文档: https://facebookincubator.github.io
‘陆’ 度量股票市场的波动性有哪些常见方法
1.首先你要知道股票的数据是时间序列数据。
经研究表明,股票数据是有自相关性的,所以古典的回归模型拟合常常是无效的。
2.另外股票数据序列是具有平稳性,或一阶差分、高阶差分平稳性
所以一般来说都会采用平稳性时间序列模型。
简单的如AR(p), MA(q), ARMA(p,q)模型等。
3.但由于这些数据往往还有条件异方差性。进一步的模型修正
有ARCH(p) , GARCH(p,q)等模型。
3中的模型是现今一些研究股票波动的主流手段的基础。
4.如果要研究多支股票波动的联合分布,可以用Copula理论进行建模(这个一般用于VaR,ES风险度量,比较前沿,国内90年代才开始引进,但并不算太难)
5.另外还有一些非实证的手段,那是搞数学的弄的了
‘柒’ 时间序列分析capm需要哪些数据
做CAPM分析需要一个market portfolio,过去人们总是选择纽约股票市场模拟这么一个market portfolio。后来Roll1976年写了一篇文章,说这种方法未必正确,因为这样得出来的数据确实在mean-variance efficient frontier 上,但是不一定就是market portfolio。
后来人们提出了一种方法,用managed portfolio,把时间序列中条件期望变成无条件期望,常常关注的变量就是 the market return, the D/P ratio, the term premium, market return 乘以 the D/P ratio,market return 乘以 the term premium。这被称为五要素模型(five-factor model)。
‘捌’ SPSS-数据分析之时间序列分析
当数据与时间息息相关,常具有周期性的变化规律,此时,时间序列分析是一个很好的发现分析及预测其发展变化的统计方法,接下来简要分享统计分析软件SPSS中时间序列分析的操作。
问:什么是时间序列?
答:时间序列是时间间隔不变的情况下收集的不同时间点数据集合。
问:那时间序列分析又是什么?
答:时间序列分析是通过研究历史数据的发展变化规律来预测事物的未来发展的统计学方法。公司营业额、销售额,人口数量,股票等方面的变化预测皆可通过此统计方法。
SPSS中的操作
首先,对数据进行 预处理:
1.查看数据是否有缺失,若有,不便后续处理,则需进行替换缺失值。
转换→替换缺失值→选择新变量→输入新变量名称、选择替换缺失值方法。
2.定义日期
数据→定义日期和时间
3.平稳性检验(平稳性指的是期望不变,方差恒定,协方差不随时间改变)
检验方法:时序图检验、自相关图检验等。可通过创建时间序列实现数据的平稳化
转换→创建时间序列
结果(例:运行中位数——跨度为1,则等于原数据)
数据预处理后对数据进行分析研究——序列图、谱分析、自相关等。
1.序列图:分析→时间序列预测→序列图→根据需要选择变量、时间轴标签等。
结果(例):可观察数据的大致波动情况。
2.谱分析:分析→时间序列预测→谱分析→根据需要选择变量、图表。
结果(例)
对于周期变化的数据,主要用于侦测系统隐含的周期或者节律行为;
对于非周期的数据,主要用于揭示系统演化过程的自相关特征。
3.自相关:分析→时间序列预测→自相关→选择变量及其他。
结果:
解读:直条高低代表自相关系数的大小,横轴1-16代表自相关的阶数,上下线之间是不具有统计学意义的,偏自相关是去除自相关系数的关联性传递性之后,用偏自相关系数考察剩余的相关性是否还存在。
关于SPSS时间序列分析的简要介绍就结束啦!
END
文 | FM
‘玖’ (19)时间序列分析
一)时间序列分析简介
二)季节分解法
三)专家建模法
一、时间序列分析简介
时间序列就是按时间顺序排列的一组数据序列。
时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。
时间序列分析有三个基本特点:
1)假设事物发展趋势会延伸到未来
2)预测所依据的数据具有不规则性
3)不考虑事物发展之间的因果关系
目的:通过分析序列进行合理预测,做到提前掌握未来的发展趋势,为业务决策提供依据,这也是决策科学化的前提。
并不是所有的时间序列都一定包含四种因素,如以年为单位的诗句就可能不包含季节变动因素。
四种因素通常有两种组合方式。
1)四种因素相互独立,即时间序列是四种因素直接叠加而成的,可用加法模型表示。
Y=T+S+C+I
2)四种因素相互影响。即时间序列是四种因素相互综合的结果,可用乘法模型表示。
Y=T*S*C*I
其中,原始时间序列值和长期趋势可用绝对数表示;
季节变动、循环变动、不规则变动可用相对数(变动百分比)表示。
二、季节分解法
当我们对一个时间序列进行预测时,应该考虑将上述四种因素从时间序列中分解出来。
为什么要分解这四种因素?
1)分解之后,能够克服其他因素的影响,仅仅考量一种因素对时间序列的影响。
2)分解之后,也可以分析他们之间的相互作用,以及他们对时间序列的综合影响。
3)当去掉这些因素后,就可以更好的进行时间序列之间的比较,从而更加客观的反映事物变化发展规律。
4)分界之后,序列可以用来建立回归模型,从而提高预测精度。
所有的时间序列都要分解这四种因素吗?
通常情况下,我们考虑进行季节因素的分解,也就是将季节变动因素从原时间序列中去除,并生成由剩余三种因素构成的序列来满足后续分析需求。
为什么只进行季节因素的分解?
1)时间序列中的长期趋势反映了事物发展规律,是重点研究的对象;
2)循环变动由于周期长,可以看做是长期趋势的反映;
3)不规则变动由于不容易测量,通常也不单独分析。
4)季节变动有时会让预测模型误判其为不规则变动,从而降低模型的预测精度
综上所述:当一个时间序列具有季节变动特征时,在预测值钱会先将季节因素进行分解。
步骤:
1、定义日期标示变量
即先将序列的时间定义好,才能分析其时间特征。
2、了解序列发展趋势
即序列图,确定乘性还是加性
3、进行季节因素分解
4、建模
5、分析结果解读
6、预测
1、定义日期标示变量
时间序列的特点就是数据根据时间点的顺序进行排列,因此分析之前,SPSS需要知道序列的时间定义,然后才能进行分析时间特征。
根据源数据的格式进行选择,并输入第一个个案的具体数值。
此时会在源文件中生成三个新的变量。
2、了解序列发展趋势
完成日期标示变量的定义之后,需要先对时间序列的变化趋势有所了解,便于选择合适的模型。即通过序列图,确定模型是乘性还是加性。
变量为”销售数据“,时间轴标签为”DATE--“,也就是我们自定义的时间。
数据销量序列图
如何根据序列图来判断模型的乘性或加性?
1)如果随着时间的推移,序列的季节波动变得越来越大,则建议使用乘法模型。
2)如果序列的季节波动能够基本维持恒定,则建议使用加法模型。
本例很明显:随着时间变化,销售数据的季节波动越来越大,那么使用乘法模型会更精确。
3、进行季节因素分解
变量为”销售数据“,且根据序列图我们知道时间序列模型为乘性。
提示您会新生成四个变量
1)ERR(误差序列)
从时间序列中移除季节因素、长期趋势、和循环变动之后留下的序列,也就是原始序列中的不规则变动构成的序列。
2)SAS(季节因素校正后序列):是移除原始序列中的季节因素后的校正序列。
3)SAF(季节因子):是从序列中分解出的季节因素。其中的变量值根据季节周期的变动进行重复,如本例中季节周期为12个月,所以这些季节因子没12个月重复一次。
4)STC(长期趋势和循环变动趋势):这是原始序列中长期趋势和循环变动构成的序列。
如图,周期为12个月,季节因子12个月循环一次。
完成季节因素分解后的序列和原始序列之间有什么差异?
通过回执序列图的方法把原始序列和除去季节因子的三个序列(误差序列、季节因素校正后序列、长期无视和循环变动序列)进行比较。
要做四个序列图,会有四个变量
原始序列:使用变量”销售数据“;
误差序列:使用变量”ERR“;
季节因素校场后序列:使用变量”SAS“
长期趋势和循环变动序列:使用变量”STC“
蓝色线:原始序列
紫色线:长期趋势和循环变动序列
浅棕色:季节因素校正后序列
绿色线:误差序列(不规则变动)
因为误差序列数值非常小,所以长期趋势和循环变动序列(长期趋势+循环变动)与季节因素校正后序列(长期趋势+循环变动+不规则变动,即误差)能够基本重合。
在单独做”季节因子SAF“的序列图
因为是做”季节因子“的序列图,所以只有一个变量”季节因子SAF“
我们看出:季节因素的周期是12个月,先下降,然后上升到第一个顶点,再有略微的下降后,出现明显的上升趋势,到第七个月时达到峰值,然后一路下跌,直到最后一个月份有所回升,之后进入第二个循环周期。
通过对原始序列的季节分解,我们更好的掌握了原始序列所包含的时间特征,从而选用适当的模型进行预测。
三、专家建模法
时间序列的预测步骤有四步:
1)绘制时间序列图观察趋势
2)分析序列平稳性并进行平稳化
3)书剑序列建模分析
4)模型评估与预测
平稳性主要是指时间序列的所有统计性质都不会随着时间的推移而发生变化。
对于一个平稳的时间序列,具备以下特征:
1)均数和方差不随时间变化
2)自相关系数只与时间间隔有关,与所处的时间无关
自相关系数是研究序列中不同时期的相关系数,也就是对时间序列计算其当前和不同滞后期的一系列相关系数。
平稳化的方法----差分
差分就是指序列中相邻的两期数据之差。
一次差分=Yt-Yt-1
二次差分=(Yt-Yt-1)-(Yt-1-Yt-2)
具体的平稳化操作过程会有专家建模法自动处理,我们只需要哼根据模型结果独处序列经过了几阶差分即可。
时间序列分析操作:
要分析所有变量,所以选择”销售数据“
【专家建模器】--【条件】,勾选”专家建模器考虑季节性模型“
勾选”预测值“,目的是生成预测值,并保存模型
时间序列分析结果解读
该表显示了经过分析得到的最优时间序列模型及其参数,最优时间U型猎魔性为ARIMA(0,1,1)(0,1,1)
求和自回归移动平均模型ARIMA(p,d,q)(P,D,Q)
p:出去季节性变化之后的序列所滞后的p期,通常为0或1,大于1的情况很少;
d:除去季节性变化之后的序列进行了d阶差分,通常取值为0,1或2;
q:除去季节性变化之后的序列进行了q次移动平均,通常取值0或1,很少会超过2;
P,D,Q分别表示包含季节性变化的序列所做的事情。
因此本例可解读为:
对除去季节性变化的序列和包含季节性变化的序列分别进行了一阶差分和一次移动平均,综合两个模型而建立出来的时间序列模型。
该表主要通过R方或平稳R方来评估模型拟合度,以及在多个模型时,通过比较统计量找到最优模型。
由于原始变量具有季节性变动因素,所以平稳的R方更具有参考意义,等于32.1%,拟合效果一般。
该表提供了更多的统计量可以用来评估时间序列模型的拟合效果。
虽然平稳R方仅仅是32.1%,但是”杨-博克斯Q(18)“统计量的显着性P=0.706,大于0.05(此处P>0.05是期望得到的结果),所以接受原假设,认为这个序列的残差符合随机分布,同时没有离群值出现,也都反映出数据的拟合效果还可以接受。
时间序列应用预测:
未来一年是到2016年12月,手动输入即可
这是未来一年的销售趋势
如果想从全局来观察预测趋势,可以在把这一年的趋势和以前的数据连接起来
此时的变量应该是”原始的销售数量“和”2016年的预测销售数量“
也可以在表中查看具体的数值
‘拾’ 对股票收盘价进行时间序列分析,预测其下一个交易日的收盘价,并与实际收盘价格进行对比
股票投资的分析这么复杂啊,先问问老师有依据这个买股票没,再回答。