导航:首页 > 数据行情 > python股票预测数据

python股票预测数据

发布时间:2023-01-15 12:10:22

① 怎样用python处理股票

用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。

② 说明 Python 处理业财数据的应用场景,并写出相应代码。可以从采购业务、存货

Python 是一种流行的编程语言,通常用于处理财务数据。一个常见的应用是在数据分析和数据科学领域,Python强大的数据处理和可视化库可用于分析大型数据集并识别数据中的趋势和模式。

可用于分析财务数据的 Python 脚本的一个示例是计算指定时间段内特定股票平均价格的脚本。金融分析师可以使用此脚本来跟踪股票的表现并预测其未来的价格走势。

下面是计算股票平均价格的 Python 代码示例:

在此代码中,我们首先导入 and 库,这些库通常用于处理 Python 中的财务数据。然后,我们使用库中的函数将库存数据从 CSV 文件加载到 ,这是一种用于处理表格数据的强大数据结构。pandasnumpyread_csv()pandasDataFrame

接下来,我们使用对象中的函数来计算股票的平均价格。最后,我们将结果打印到控制台。mean()DataFrame

这只是Python如何用于财务数据分析的一个简单示例。在这个领域使用Python还有许多其他应用和可能性,包括分析投资组合的表现,预测股票价格等等。

回答不易望请采纳

③ 如何利用Python预测股票价格

预测股票价格没有意义。
单支股票价格,多股组合,大盘这些都可以使用神经网络来学习,02年就做过了,涨跌预测平均能达到54%到57%的准确率,但是只能定性,无法定量,因此,在扣除印花税之后无利可图。

纯粹使用股票交易数据来预测并保证总体获利不是程序能办到的,人也办不到。
目前世界上最先进的炒股机器也只能利用网络时差那微不可计的零点几秒在欧洲与美国证券间倒来倒去,那套系统研发费用数千万,硬件(主要是独立光缆)费用以亿计。

④ 用Python怎么做量化投资

本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出
其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还要选择回测平台。
一、数据
首先,必须是数据,数据是量化投资的基础
如何得到数据?

Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软件的借口,Excel,Matlab,Python,C++。
预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式
TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源
TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取
如何存储数据?
Mysql
如何预处理数据?

空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数
数据标准化
数据如何分类?
行情数据
财务数据
宏观数据
二、计算语言&软件

已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python
python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:
Numpy&Scipy:科学计算库,矩阵计算
Pandas:金融数据分析神器,原AQR资本员工写的一个库,处理时间序列的标配

Matplotlib:画图库
scikit-learn:机器学习库
statsmodels:统计分析模块
TuShare:免费、开源的python财经数据接口包

Zipline:回测系统
TaLib:技术指标库
matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化

python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算
Matplotlib完克Matlab的画图功能
python还有很多其他的功能
pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化
推荐的python学习文档和书籍
关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。

涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程
pandas文档
statsmodels文档
scipy和numpy文档
matplotlib文档

TuShare文档
第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的
三、回测框架和网站
两个开源的回测框架
PyAlgoTrade - Algorithmic Trading

Zipline, a Pythonic Algorithmic Trading Library

⑤ 如何使用Python获取股票分时成交数据

可以使用爬虫来爬取数据,在写个处理逻辑进行数据的整理。你可以详细说明下你的需求,要爬取的网站等等。
希望我的回答对你有帮助

⑥ 如何用python获取股票数据

在Python的QSTK中,是通过s_datapath变量,定义相应股票数据所在的文件夹。一般可以通过QSDATA这个环境变量来设置对应的数据文件夹。具体的股票数据来源,例如沪深、港股等市场,你可以使用免费的WDZ程序输出相应日线、5分钟数据到s_datapath变量所指定的文件夹中。然后可使用Python的QSTK中,qstkutil.DataAccess进行数据访问。

⑦ 如何在Python中用LSTM网络进行时间序列预测

时间序列模型

时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。
举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化;根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等

RNN 和 LSTM 模型

时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural network, RNN)。相比与普通神经网络的各计算结果之间相互独立的特点,RNN的每一次隐含层的计算结果都与当前输入以及上一次的隐含层结果相关。通过这种方法,RNN的计算结果便具备了记忆之前几次结果的特点。

典型的RNN网路结构如下:

4. 模型训练和结果预测
将上述数据集按4:1的比例随机拆分为训练集和验证集,这是为了防止过度拟合。训练模型。然后将数据的X列作为参数导入模型便可得到预测值,与实际的Y值相比便可得到该模型的优劣。

实现代码

  • 时间间隔序列格式化成所需的训练集格式

  • import pandas as pdimport numpy as npdef create_interval_dataset(dataset, look_back):

  • """ :param dataset: input array of time intervals :param look_back: each training set feature length :return: convert an array of values into a dataset matrix. """

  • dataX, dataY = [], [] for i in range(len(dataset) - look_back):

  • dataX.append(dataset[i:i+look_back])

  • dataY.append(dataset[i+look_back]) return np.asarray(dataX), np.asarray(dataY)


  • df = pd.read_csv("path-to-your-time-interval-file")

  • dataset_init = np.asarray(df) # if only 1 columndataX, dataY = create_interval_dataset(dataset, lookback=3) # look back if the training set sequence length

  • 这里的输入数据来源是csv文件,如果输入数据是来自数据库的话可以参考这里

  • LSTM网络结构搭建

  • import pandas as pdimport numpy as npimport randomfrom keras.models import Sequential, model_from_jsonfrom keras.layers import Dense, LSTM, Dropoutclass NeuralNetwork():

  • def __init__(self, **kwargs):

  • """ :param **kwargs: output_dim=4: output dimension of LSTM layer; activation_lstm='tanh': activation function for LSTM layers; activation_dense='relu': activation function for Dense layer; activation_last='sigmoid': activation function for last layer; drop_out=0.2: fraction of input units to drop; np_epoch=10, the number of epoches to train the model. epoch is one forward pass and one backward pass of all the training examples; batch_size=32: number of samples per gradient update. The higher the batch size, the more memory space you'll need; loss='mean_square_error': loss function; optimizer='rmsprop' """

  • self.output_dim = kwargs.get('output_dim', 8) self.activation_lstm = kwargs.get('activation_lstm', 'relu') self.activation_dense = kwargs.get('activation_dense', 'relu') self.activation_last = kwargs.get('activation_last', 'softmax') # softmax for multiple output

  • self.dense_layer = kwargs.get('dense_layer', 2) # at least 2 layers

  • self.lstm_layer = kwargs.get('lstm_layer', 2) self.drop_out = kwargs.get('drop_out', 0.2) self.nb_epoch = kwargs.get('nb_epoch', 10) self.batch_size = kwargs.get('batch_size', 100) self.loss = kwargs.get('loss', 'categorical_crossentropy') self.optimizer = kwargs.get('optimizer', 'rmsprop') def NN_model(self, trainX, trainY, testX, testY):

  • """ :param trainX: training data set :param trainY: expect value of training data :param testX: test data set :param testY: epect value of test data :return: model after training """

  • print "Training model is LSTM network!"

  • input_dim = trainX[1].shape[1]

  • output_dim = trainY.shape[1] # one-hot label

  • # print predefined parameters of current model:

  • model = Sequential() # applying a LSTM layer with x dim output and y dim input. Use dropout parameter to avoid overfitting

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=input_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) for i in range(self.lstm_layer-2):

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) # argument return_sequences should be false in last lstm layer to avoid input dimension incompatibility with dense layer

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out)) for i in range(self.dense_layer-1):

  • model.add(Dense(output_dim=self.output_dim,

  • activation=self.activation_last))

  • model.add(Dense(output_dim=output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_last)) # configure the learning process

  • model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy']) # train the model with fixed number of epoches

  • model.fit(x=trainX, y=trainY, nb_epoch=self.nb_epoch, batch_size=self.batch_size, validation_data=(testX, testY)) # store model to json file

  • model_json = model.to_json() with open(model_path, "w") as json_file:

  • json_file.write(model_json) # store model weights to hdf5 file

  • if model_weight_path: if os.path.exists(model_weight_path):

  • os.remove(model_weight_path)

  • model.save_weights(model_weight_path) # eg: model_weight.h5

  • return model

  • 这里写的只涉及LSTM网络的结构搭建,至于如何把数据处理规范化成网络所需的结构以及把模型预测结果与实际值比较统计的可视化,就需要根据实际情况做调整了。

    阅读全文

    与python股票预测数据相关的资料

    热点内容
    国务院国有资产监督管理委员会股票 浏览:130
    宜信最新股票价格 浏览:142
    亚盛股票走势 浏览:448
    工业设计软件概念股票 浏览:970
    中国股票最高的是什么股 浏览:272
    如何利用股东数据分析股票 浏览:153
    同济科技股票配股价 浏览:217
    股票短期融资债券到期兑付是好是坏 浏览:595
    股票交通银行000001 浏览:809
    债券比股票 浏览:516
    中国软件这个股票怎么样 浏览:544
    股票里的特殊账户 浏览:424
    最准确的股票数据网 浏览:28
    网商银行的股票代码 浏览:391
    行业互动对股票市场有什么影响 浏览:553
    必需品投资组合股票行情分析 浏览:619
    股票看盘重要时间点 浏览:739
    股票投资从哪开始学 浏览:662
    资产管理公司可以代买股票吗 浏览:625
    最新石墨烯股票 浏览:533