Ⅰ earch模型结果怎么看
根据股票市场收益率序列呈尖峰厚尾、偏态、波动集聚和杠杆效应等特征,本文构建Skew-GED(SGED)分布下的变参数ARIMA+EGARCH动态混合预测模型来挖掘和分析收益率序列的内在规律,运用r语言通过实时最优化动态模型的参数估计,分别对5只股票日对数收益率序列的未来收益情况进行每日预测每日更新,输出交易信号;最后通过滚动时间窗进行推进分析,解决可能存在的过度拟合问题,结果表明动态模型能更好地描述收益率特性,提高预测准确性。
【关键词】变参数ARIMA+EGARCH动态模型;参数优化;推进分析;股票收益率预测
一、引言
波动性是股票市场最为重要特性之一,因此,探讨其波动规律、把握其运行趋势成为当今学术界与实务界研究的热点。
股票收益率波动模型的研究主要有:ARMA 类模型、ARCH 类模型及二者的混合模型,模型中波动误差分布的假定主要有正态分布、T 分布、GED 分布和SKT 分布。国内外大量研究表明,收益率序列波动通常具有集聚性、分布的尖峰厚尾性以及有偏性逗裤。本文以5只股票为例,通过对股票日对数收益率序列的分析,发现股票日对数收益率波动存在明显的“尖峰厚尾”现象、波动集聚和非对称特征。通过建立收益率序列的ARIMA 模型处理中期记忆特征,然后再利用EGARCH模型处理异方差的非对称以及波动率聚集特征,采用S-GED分布解决股票收益率波动的“尖峰厚尾”现象以及有偏分布问题,就能够很好地解决股票收益率的这些特性,取得较理想的拟合及预测效果。
本文利用Skew-GED(SGED)分布下的变参数ARIMA+EGARCH动态预测模型对给定的5只股票收益率进行预测,为股票收益率预测和股票投资提供一种思路。任何一种预测方法都要回归现实,接受实践的检验,本文的预测部分证明了该模型具有一定的预测精度,在一定程度上能够为投资者和金融市场相关人员及机构提供决策依据。
二山宴简、股票收益率预测建模
2.1模型建立原理
2.1.1进行股票收益率的预测
在股票市场中,准确的股票收益率预测是市场交易各方共同关心的重要问题。多数金融研究针对的是资产收祥姿益率而不是资产价格。Campbell,Lo和MacKinlay(1997)给出了使用收益率的两个主要理由:第一、对普通投资者来说,资产收益率完全体现了该资产的投资机会,且与其投资规模无关;第二,收益率序列比价格序列更容易处理,因为前者有更好的统
Ⅱ 时间序列分析模型——ARIMA模型
姓名:车文扬 学号:16020199006
【嵌牛导读】:什么是 ARIMA模型
【嵌牛鼻子】: ARIMA
【嵌牛提问】: ARIMA模型可以具体应用到什么地方?
【嵌牛正文】:
一、研究目的
传统的经济计量方法是以经济理论为基础来描述变量关系的模型。但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。为了解决这些问题而出现了一种用非结构方法来建立各个变量之间关系的模型,如向量自回归模型(vector autoregression,VAR)和向量误差修正模型(vector error correction model,VEC)。
在经典的回归模型中,主要是 通过回归分析来建立不同变量之间的函数关系(因果关系),以考察事物之间的联系 。本案例要讨论如何 利用时间序列 数据本身建立模型,以研究事物发展自身的规律 ,并据此对事物未来的发展做出预测。研究时间序列数据的意义:在现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。在现实中很多问题,如利率波动、收益率变化、反映股市行情的各种指数等通常都可以表达为时间序列数据,通过研究这些数据,发现这些经济变量的变化规律(对于某些变量来说,影响其发展变化的因素太多,或者是主要影响变量的数据难以收集,以至于难以建立回归模型来发现其变化发展规律,此时,时间序列分析模型就显现其优势——因为这类模型不需要建立因果关系模型,仅需要其变量本身的数据就可以建模),这样的一种建模方式就属于时间序列分析的研究范畴。而时间序列分析中,ARIMA模型是最典型最常用的一种模型。
二、ARIMA模型的原理
1、ARIMA的含义。 ARIMA包含3个部分,即AR、I、MA。AR——表示auto regression,即自回归模型;I——表示integration,即单整阶数,时间序列模型必须是平稳性序列才能建立计量模型,ARIMA模型作为时间序列模型也不例外,因此首先要对时间序列进行单位根检验,如果是非平稳序列,就要通过差分来转化为平稳序列,经过几次差分转化为平稳序列,就称为几阶单整;MA——表示moving average,即移动平均模型。可见,ARIMA模型实际上是AR模型和MA模型的组合。
ARIMA模型与ARMA模型的区别:ARMA模型是针对平稳时间序列建立的模型。ARIMA模型是针对非平稳时间序列建模。换句话说,非平稳时间序列要建立ARMA模型,首先需要经过差分转化为平稳时间序列,然后建立ARMA模型。
2、ARIMA模型的原理。 正如前面介绍,ARIMA模型实际上是AR模型和MA模型的组合。
AR模型的形式如下:
其中:参数为常数,是阶自回归模型的系数;为自回归模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶自回归模型。
MA模型的形式如下:
其中:参数为常数;参数是阶移动平均模型的系数;为移动平均模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶移动平均模型。
ARIMA模型的形式如下:
模型记做。为自回归模型滞后阶数,为时间序列单整阶数,为阶移动平均模型滞后阶数。当时,,此时ARIMA模型退化为MA模型;当时,,ARIMA模型退化为AR模型。
3、建立ARIMA模型需要解决的3个问题。 由以上分析可知,建立一个ARIMA模型需要解决以下3个问题:
(1)将非平稳序列转化为平稳序列。
(2)确定模型的形式。即模型属于AR、MA、ARMA中的哪一种。这主要是通过 模型识别 来解决的。
(3)确定变量的滞后阶数。即和的数字。这也是通过 模型识别 完成的。
4、ARIMA模型的识别
ARIMA模型识别的工具为自相关系数(AC)和偏自相关系数(PAC)。
自相关系数: 时间序列滞后k阶的自相关系数由下式估计:
其中是序列的样本均值,这是相距k期值的相关系数。称为时间序列的自相关系数,自相关系数可以部分的刻画一个随机过程的形式。它表明序列的邻近数据之间存在多大程度的相关性。
偏自相关系数: 偏自相关系数是在给定的条件下,之间的条件相关性。其相关程度用偏自相关系数度量。在k阶滞后下估计偏自相关系数的计算公式为:
其中是在k阶滞后时的自相关系数估计值。称为偏相关是因为它度量了k期间距的相关而不考虑k-1期的相关。如果这种自相关的形式可由滞后小于k阶的自相关表示,那么偏相关在k期滞后下的值趋于0。
识别:
AR(p) 模型 的自相关系数是随着k的增加而呈现指数衰减或者震荡式的衰减,具体的衰减形式取决于AR(p)模型滞后项的系数;AR(p)模型的偏自相关系数是p阶截尾的。因此可以通过识别AR(p)模型的偏自相关系数的个数来确定AR(p)模型的阶数p。
MA(q) 模型 的自相关系数在q步以后是截尾的。MA(q)模型的偏自相关系数一定呈现出拖尾的衰减形式。
ARMA(p,q) 模型 是AR(p)模型和MA(q)模型的组合模型,因此ARMA(p,q)的自相关系数是AR(p)自相关系数和MA(q)的自相关系数的混合物。当p=0时,它具有截尾性质;当q=0时,它具有拖尾性质;当p,q都不为0,它具有拖尾性质。
通常,ARMA(p,q)过程的偏自相关系数可能在p阶滞后前有几项明显的 尖柱 ,但从p阶滞后项开始逐渐趋于0;而它的自相关系数则是在q阶滞后前有几项明显的 尖柱 ,从q阶滞后项开始逐渐趋于0。
三、数据和变量的选择
本案例选取我国实际GDP的时间序列建立ARIMA模型,样本区间为1978—2001。数据来源于国家统计局网站上各年的统计年鉴,GDP数据均通过GDP指数换算为以1978年价格计算的值。见表1:
表1:我国1978—2003年GDP(单位:亿元)
年度GDP年度GDP年度GDP
19783605.6198610132.8199446690.7
19794074198711784.7199558510.5
19804551.3198814704199668330.4
19814901.4198916466199774894.2
19825489.2199018319.5199879003.3
19836076.3199121280.4199982673.1
19847164.4199225863.7200089340.9
19858792.1199334500.7200198592.9
四、ARIMA模型的建立步骤
1、单位根检验,确定单整阶数。
由单位根检验的案例分析可知,GDP时间序列为2阶单整的。即d=2。通过2次差分,将GDP序列转化为平稳序列 。利用序列来建立ARMA模型。
2、模型识别
确定模型形式和滞后阶数,通过自相关系数(AC)和偏自相关系数(PAC)来完成识别。
首先将GDP数据输入Eviews软件,查看其二阶差分的AC和PAC。打开GDP序列窗口,点击View按钮,出现下来菜单,选择Correlogram(相关图),如图:
打开相关图对话框,选择二阶差分(2nd difference),点击OK,得到序列的AC和PAC。(也可以将GDP序列先进行二阶差分,然后在相关图中选择水平(Level))
从图中可以看出,序列的自相关系数(AC)在1阶截尾,偏自相关系数(PAC)在2阶截尾。因此判断模型为ARMA模型,且,。即:
3、建模
由以上分析可知,建立模型。首先将GDP序列进行二次差分,得到序列。然后在Workfile工作文件簿中新建一个方程对话框,采用 列表法 的方法对方程进行定义。自回归滞后项用ar表示,移动平均项用ma表示。本例中自回归项有两项,因此用ar(1)、ar(2)表示,移动平均项有一项,用ma(1)表示,如图:
点击确定,得到模型估计结果:
从拟合优度看,,模型拟合效果较好,DW统计量为2.43,各变量t统计量也通过显着性检验,模型较为理想。对残差进行检验,也是平稳的,因此判断模型建立正确。
Ⅲ 如何用Arma模型做股票估计
时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显着检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显着水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。
Ⅳ 时间序列基础
1.随机时序分析的基本概念
1)随机变量:简单的随机现象,如某班一天学生出勤人数,是静态的。
2)随机过程:随机现象的动态变化过程。动态的。如某一时期各个时刻的状态。
所谓随机过程,就是说现象的变化没有确定形式,没有必然的变化规律。用数学语言来说,就是事物变化的过程不能用一个(或几个)时间t的确定的函数来描述。
如果对于每一特定的t属于T(T是时间集合),X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t属于T}是一个随机过程。
2.白噪声序列
1)纯随机过程:随机变量X(t)(t=1,2,3……),如果是由一个不相关的随机变量的序列构成的,即对于所有s不等于k,随机变量Xs和Xk的协方差为零,则称其为 纯随机过程 。
2)白噪声过程:如果一个纯随机过程的期望和方差均为常数,则称之为 白噪声过程 。白噪声过程的样本实称成为白噪声序列,简称白噪声。
3)高斯白噪声序列:如果白噪声具体是服从均值为0、方差为常数的正态分布,那就是 高斯白噪声序列 。
3.平稳性序列
1)平稳性可以说是时间序列分析的基础。平稳的通俗理解就是时间序列的一些行为不随时间改变, 所谓平稳过程就是其统计特性不随时间的平移而变化的过程。
2)即时间序列内含的规律和逻辑,要在被预测的未来时间段内能够延续下去。这样我们才能用历史信息去预测未来信息,类似机器学习中的训练集和测试集同分布。
3)如果时间序列的变化是没有规律的、完全随机的,那么预测模型也就没有用。
4)平稳性的数学表达:如果时间序列在某一常数附近波动且波动范围有限,即有常数均值和常数方差,并且延迟k期的序列变量的自协方差和自相关系数是相等的或者说延迟k期的序列变量之间的影响程度是一样的,则称该序列为平稳序列。简单说就是没有明显趋势且波动范围有限。
4.严平稳/强平稳
1)通俗来说,就是时间序列的联合分布随着时间变化严格保持不变。
2)数学表达:如果对所有的时刻 t, (yt1,yt2,…ytm)的联合分布与(y(t1+k),(yt2+k),…y(tm+k))的联合分布相同,我们称时间序列 {yt} 是严平稳的。也就是时间序列的联合分布在时间的平移变换下保持不变。
5.弱平稳
1)数学表达:均值不变,协方差Cov(yt,y(t-k))=γk,γk依赖于k。
2)即协方差也不随时间改变,而仅与时间差k相关。
3)可以根据根据时间序列的折线图等大致观察数据的(弱)平稳性:*所有数据点在一个常数水平上下以相同幅度波动。
4)弱平稳的线性时间序列具有短期相关性(证明见参考书),即通常只有近期的序列值对现时值得影响比较明显,间隔越远的过去值对现时值得影响越小。至于这个间隔,也就是下面要提到的模型的阶数。
6.严平稳和弱平稳的关系
1)严平稳是一个很强的条件,难以用经验的方法验证,所以一般将弱平稳性作为模型的假设条件。
2)两者并不是严格的包含与被包含关系,但当时间序列是正态分布时,二者等价。
7.单位根非平稳序列(可转换为平稳序列的非平稳序列)
在金融数据中,通常假定资产收益率序列是弱平稳的。但还有一些研究对象,比如利率、汇率、资产的价格序列,往往不是平稳的。对于资产的价格序列,其非平稳性往往由于价格没有固定的水平,这样的非平稳序列叫做单位根(unit-root)非平稳序列。
1)最着名的单位根非平稳序列的例子是随机游走(random walk)模型:
pt=μ+p(t-1)+εt
μ是常数项(漂移:drift)。εt是白噪声序列,则pt就是一个随机游走。它的形式和AR模型很像,但不同之处在于,AR模型中,系数的模需要小于1,这是AR的平稳性条件,而随机游走相当于系数为1的AR公式,不满足AR模型的平稳性条件。
随机游走模型可作为(对数)股价运动的统计模型,在这样的模型下,股价是不可预测的。因为εt关于常数对称,所以在已知p(t-1)的条件下,pt上升或下降的概率都是50%,无从预测。
2)带趋势项的时间序列
pt=β0+β1*t+yt,yt是一个平稳时间序列。
带漂移的随机游走模型,其均值和方差都随时间变化;而带趋势项的时间序列,其均值随时间变化,但方差则是不变的常数。
单位根非平稳序列可以进行平稳化处理转换为平稳序列。比如用差分法处理随机游走序列,用用简单的回归分析移除时间趋势处理带趋势项的时间序列。
建立具体的模型,需解决如下三个问题模型的具体形式、时序变量的滞后期以及随机扰动项的结构。
μ是yt的均值;ψ是系数,决定了时间序列的线性动态结构,也被称为权重,其中ψ0=1;{εt}为高斯白噪声序列,它表示时间序列{yt}在t时刻出现了新的信息,所以εt称为时刻t的innovation(新信息)或shock(扰动)。
线性时间序列模型,就是描述线性时间序列的权重ψ的计量经济模型或统计模型,比如ARIMA。因为并非所有金融数据都是线性的,所以不是所有金融数据都适合ARIMA等模型。
①自回归模型(AR)
用变量自身的历史时间数据对变量进行回归,从而预测变量未来的时间数据。
p阶(滞后值,可暂理解为每个移动窗口有p期)自回归公式即AR(p):
②移动平均模型(MA)
移动平均模型关注的是误差项的累加,能够有效消除预测中的随机波动。
可以看作是白噪声序列的简单推广,是白噪声序列的有限线性组合。也可以看作是参数受到限制的无穷阶AR模型。
③自回归移动平均模型(ARMA)
有时候,要用很多阶数的AR和MA模型(见后面的定阶问题),为解决这个问题提出ARMA模型。
对于金融中的收益率序列,直接使用ARMA模型的时候较少,但其概念与波动率建模很相关,GARCH模型可以认为是对{εt}的ARMA模型。
④自回归差分移动平均模型(ARIMA)
ARIMA比ARMA仅多了个"I",代表的含义可理解为 差分。
一些非平稳序列经过d次差分后,可以转化为平稳时间序列。我们对差分1次后的序列进行平稳性检验,若果是非平稳的,则继续差分。直到d次后检验为平稳序列。
⑤一般分析过程
1、 平稳性检验
ADF检验(单位根检验):这是一种检查数据稳定性的统计测试。
原假设(无效假设):时间序列是不稳定的。
2、 平稳化处理
平稳化的基本思路是:通过建模并估计趋势和季节性这些因素,并从时间序列中移除,来获得一个稳定的时间序列,然后再使用统计预测技术来处理时间序列,最后将预测得到的数据,通过加入趋势和季节性等约束,来还原到原始时间序列数据。
2.0 对数变换
对某些时间序列需要取对数处理,一是可以将一些指数增长的时间序列变成线性增长,二是可以稳定序列的波动性。对数变换在经济金融类时间序列中常用。
2.1 差分法
如果是单位根非平稳的(比如随机游走模型),可以对其进行差分化。它能让数据呈现一种更加平稳的趋势。差分阶数的选择通常越小越好,只要能够使得序列稳定就行。
2.2 平滑法
移动平均、指数加权移动平均
注:经差分或平滑后的数据可能因包含缺失值而不能使用检验,需要将缺失值去除
2.3 分解法
建立有关趋势和季节性的模型,并从模型中删除它们。
3 、建立模型:模型选择和模型的定阶
模型的选择即在AR、MA、ARMA、ARIMA中间如何选择。
模型的定阶即指定上面过程中产生的超参数p、q和d(差分的阶数)。
(1)用ACF和PACF图判断使用哪种线性时间序列模型
AR模型:ACF拖尾,PACF截尾,看PACF定阶。
MA模型:ACF截尾,PACF拖尾,看ACF定阶。
ARMA模型:都拖尾。(EACF定阶)
截尾:在某阶后 迅速 趋于0(后面大部分阶的对应值在二倍标准差以内);
拖尾:按指数衰减或震荡,值到后面还有增大的情况。
ARIMA模型:适用于差分后平稳的序列。
(2)利用 信息准则 函数选择合适的阶
对于个数不多的时序数据,可以通过观察自相关图和偏相关图来进行模型识别,倘若要分析的时序数据量较多,例如要预测每只股票的走势,就不可能逐个去调参了。这时可以依据AIC或BIC准则识别模型的p, q值,通常认为AIC或BIC值越小的模型相对更优。
AIC或BIC准则综合考虑了残差大小和自变量的个数,残差越小AIC或BIC值越小,自变量个数越多AIC或BIC值越大。AIC或BIC准则可以说是对模型过拟合设定了一个标准。
AIC (Akaike information criterion,赤池信息度量准则)
AIC=2k-2ln(L)
· BIC (Bayesian information criterion,贝叶斯信息度量准则)
BIC=kln(n)-2ln(L)
k为模型的超参数个数,n为样本数量,L为似然函数。
类比机器学习中的损失函数=经验损失函数+正则化项。
模型选择标准:AIC和BIC越小越好(在保证精度的情况下模型越简单越好)
4 、模型检验和评估(之前应切分训练集和验证集)
检验残差是否符合标准(QQ图):是否服从均值为0,方差是常数的正态分布(εt是否是高斯白噪声序列)。
拟合优度检验(模型的评估):R 2和调整后的R 2(R^2只适用于平稳序列)。
5 、预测
如果之前进行了标准化、差分化等,需要进行还原:
标准化的还原要注意是log(x+1)还是log(x)。
1 、基础概念
波动率
在期权交易中,波动率是标的资产的收益率的条件标准差。之前的平稳序列假设方差为常数,但当序列的方差不是常数时,我们需要用波动率对其变化进行描述。
对于金融时间序列,波动率往往具有以下特征:
存在波动率聚集(volatility cluster)现象。 即波动率在一些 时间段 上高,一些时间段上低。
波动率以连续时间变化,很少发生跳跃。
波动率不会发散到无穷,而是在固定的范围内变化(统计学角度上说,其是平稳的)
杠杆效应:波动率对价格大幅上升和大幅下降的反应是不同的。
波动率模型/条件异方差模型
给资产收益率的波动率进行建模的模型叫做条件异方差模型。这些波动率模型试图刻画的数据有这样的特性: 它们是序列不相关或低阶序列相关的(比如股票的日收益率可能相关,但月收益率则无关),但又不是独立的 。波动率模型就是试图刻画序列的这种非独立性。
定义信息集F(t-1)是包含过去收益率的一切线性函数,假定F(t-1)给定,那么在此条件下时间序列yt的条件均值和条件方差分别表示为:
Ⅳ 度量股票市场的波动性有哪些常见方法
1.首先你要知道股票的数据是时间序列数据。
经研究表明,股票数据是有自相关性的,所以古典的回归模型拟合常常是无效的。
2.另外股票数据序列是具有平稳性,或一阶差分、高阶差分平稳性
所以一般来说都会采用平稳性时间序列模型。
简单的如AR(p), MA(q), ARMA(p,q)模型等。
3.但由于这些数据往往还有条件异方差性。进一步的模型修正
有ARCH(p) , GARCH(p,q)等模型。
3中的模型是现今一些研究股票波动的主流手段的基础。
4.如果要研究多支股票波动的联合分布,可以用Copula理论进行建模(这个一般用于VaR,ES风险度量,比较前沿,国内90年代才开始引进,但并不算太难)
5.另外还有一些非实证的手段,那是搞数学的弄的了