导航:首页 > 数据行情 > Python股票收益率数据

Python股票收益率数据

发布时间:2023-09-19 15:36:21

⑴ 怎么用python计算股票

作为一个python新手,在学习中遇到很多问题,要善于运用各种方法。今天,在学习中,碰到了如何通过收盘价计算股票的涨跌幅。
第一种:
读取数据并建立函数:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置

t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)

plt.show()
f(t)
第二种:
利用pandas里面的方法:
import pandas as pd

a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets

第三种:
close=a['close']
rets=close/close.shift(1)-1
print rets

总结:python是一种非常好的编程语言,一般而言,我们可以运用构建相关函数来实现自己的思想,但是,众所周知,python中里面的有很多科学计算包,里面有很多方法可以快速解决计算的需要,如上面提到的pandas中的pct_change()。因此在平时的使用中应当学会寻找更好的方法,提高运算速度。

⑵ 如何用python实现Markowitz投资组合优化

0.导入需要的包import pandas as pd
import numpy as np
import statsmodels.api as sm #统计运算
import scipy.stats as scs #科学计算
import matplotlib.pyplot as plt #绘图

1.选取几只感兴趣的股票
000413 东旭光电,000063 中兴通讯,002007 华兰生物,000001 平安银行,000002 万科A
并比较一下数据(2015-01-01至2015-12-31)
In[1]:
stock_set = ['000413.XSHE','000063.XSHE','002007.XSHE','000001.XSHE','000002.XSHE']
noa = len(stock_set)
df = get_price(stock_set, start_date = '2015-01-01', end_date ='2015-12-31', 'daily', ['close'])
data = df['close']
#规范化后时序数据
(data/data.ix[0]*100).plot(figsize = (8,5))
Out[1]:

2.计算不同证券的均值、协方差
每年252个交易日,用每日收益得到年化收益。计算投资资产的协方差是构建资产组合过程的核心部分。运用pandas内置方法生产协方差矩阵。
In [2]:
returns = np.log(data / data.shift(1))
returns.mean()*252
Out[2]:

000413.XSHE 0.184516
000063.XSHE 0.176790
002007.XSHE 0.309077
000001.XSHE -0.102059
000002.XSHE 0.547441

In [3]:
returns.cov()*252
Out[3]:

3.给不同资产随机分配初始权重
由于A股不允许建立空头头寸,所有的权重系数均在0-1之间
In [4]:
weights = np.random.random(noa)
weights /= np.sum(weights)
weights
Out[4]:

array([ 0.37505798, 0.21652754, 0.31590981, 0.06087709, 0.03162758])

4.计算预期组合年化收益、组合方差和组合标准差
In [5]:
np.sum(returns.mean()*weights)*252
Out[5]:

0.21622558669017816

In [6]:
np.dot(weights.T, np.dot(returns.cov()*252,weights))
Out[6]:

0.23595133640121463

In [7]:
np.sqrt(np.dot(weights.T, np.dot(returns.cov()* 252,weights)))
Out[7]:

0.4857482232609962

5.用蒙特卡洛模拟产生大量随机组合
进行到此,我们最想知道的是给定的一个股票池(证券组合)如何找到风险和收益平衡的位置。
下面通过一次蒙特卡洛模拟,产生大量随机的权重向量,并记录随机组合的预期收益和方差。
In [8]:
port_returns = []
port_variance = []
for p in range(4000):
weights = np.random.random(noa)
weights /=np.sum(weights)
port_returns.append(np.sum(returns.mean()*252*weights))
port_variance.append(np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252, weights))))
port_returns = np.array(port_returns)
port_variance = np.array(port_variance)
#无风险利率设定为4%
risk_free = 0.04
plt.figure(figsize = (8,4))
plt.scatter(port_variance, port_returns, c=(port_returns-risk_free)/port_variance, marker = 'o')
plt.grid(True)
plt.xlabel('excepted volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')
Out[8]:

6.投资组合优化1——sharpe最大
建立statistics函数来记录重要的投资组合统计数据(收益,方差和夏普比)
通过对约束最优问题的求解,得到最优解。其中约束是权重总和为1。
In [9]:
def statistics(weights):
weights = np.array(weights)
port_returns = np.sum(returns.mean()*weights)*252
port_variance = np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252,weights)))
return np.array([port_returns, port_variance, port_returns/port_variance])
#最优化投资组合的推导是一个约束最优化问题
import scipy.optimize as sco
#最小化夏普指数的负值
def min_sharpe(weights):
return -statistics(weights)[2]
#约束是所有参数(权重)的总和为1。这可以用minimize函数的约定表达如下
cons = ({'type':'eq', 'fun':lambda x: np.sum(x)-1})
#我们还将参数值(权重)限制在0和1之间。这些值以多个元组组成的一个元组形式提供给最小化函数
bnds = tuple((0,1) for x in range(noa))
#优化函数调用中忽略的唯一输入是起始参数列表(对权重的初始猜测)。我们简单的使用平均分布。
opts = sco.minimize(min_sharpe, noa*[1./noa,], method = 'SLSQP', bounds = bnds, constraints = cons)
opts
Out[9]:
status: 0
success: True
njev: 4
nfev: 28
fun: -1.1623048291871221
x: array([ -3.60840218e-16, 2.24626781e-16, 1.63619563e-01, -2.27085639e-16, 8.36380437e-01])
message: 'Optimization terminated successfully.'
jac: array([ 1.81575805e-01, 5.40387481e-01, 8.18073750e-05, 1.03137662e+00, -1.60038471e-05, 0.00000000e+00])
nit: 4

得到的最优组合权重向量为:
In [10]:
opts['x'].round(3)
Out[10]:
array([-0. , 0. , 0.164, -0. , 0.836])

sharpe最大的组合3个统计数据分别为:
In [11]:
#预期收益率、预期波动率、最优夏普指数
statistics(opts['x']).round(3)
Out[11]:

array([ 0.508, 0.437, 1.162])

7.投资组合优化2——方差最小
接下来,我们通过方差最小来选出最优投资组合。
In [12]:
#但是我们定义一个函数对 方差进行最小化
def min_variance(weights):
return statistics(weights)[1]
optv = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)
optv
Out[12]:
status: 0
success: True
njev: 7
nfev: 50
fun: 0.38542969450547221
x: array([ 1.14787640e-01, 3.28089742e-17, 2.09584008e-01, 3.53487044e-01, 3.22141307e-01])
message: 'Optimization terminated successfully.'
jac: array([ 0.3851725 , 0.43591119, 0.3861807 , 0.3849672 , 0.38553924, 0. ])
nit: 7

方差最小的最优组合权重向量及组合的统计数据分别为:
In [13]:
optv['x'].round(3)
Out[13]:
array([ 0.115, 0. , 0.21 , 0.353, 0.322])

In [14]:
#得到的预期收益率、波动率和夏普指数
statistics(optv['x']).round(3)
Out[14]:
array([ 0.226, 0.385, 0.587])

8.组合的有效前沿
有效前沿有既定的目标收益率下方差最小的投资组合构成。
在最优化时采用两个约束,1.给定目标收益率,2.投资组合权重和为1。
In [15]:
def min_variance(weights):
return statistics(weights)[1]
#在不同目标收益率水平(target_returns)循环时,最小化的一个约束条件会变化。
target_returns = np.linspace(0.0,0.5,50)
target_variance = []
for tar in target_returns:
cons = ({'type':'eq','fun':lambda x:statistics(x)[0]-tar},{'type':'eq','fun':lambda x:np.sum(x)-1})
res = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)
target_variance.append(res['fun'])
target_variance = np.array(target_variance)

下面是最优化结果的展示。
叉号:构成的曲线是有效前沿(目标收益率下最优的投资组合)
红星:sharpe最大的投资组合
黄星:方差最小的投资组合
In [16]:
plt.figure(figsize = (8,4))
#圆圈:蒙特卡洛随机产生的组合分布
plt.scatter(port_variance, port_returns, c = port_returns/port_variance,marker = 'o')
#叉号:有效前沿
plt.scatter(target_variance,target_returns, c = target_returns/target_variance, marker = 'x')
#红星:标记最高sharpe组合
plt.plot(statistics(opts['x'])[1], statistics(opts['x'])[0], 'r*', markersize = 15.0)
#黄星:标记最小方差组合
plt.plot(statistics(optv['x'])[1], statistics(optv['x'])[0], 'y*', markersize = 15.0)
plt.grid(True)
plt.xlabel('expected volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')

⑶ 怎样用python处理股票

用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。

⑷ 如何用Python和机器学习炒股赚钱

相信很多人都想过让人工智能来帮你赚钱,但到底该如何做呢?瑞士日内瓦的一位金融数据顾问 Gaëtan Rickter 近日发表文章介绍了他利用 Python 和机器学习来帮助炒股的经验,其最终成果的收益率跑赢了长期处于牛市的标准普尔 500 指数。虽然这篇文章并没有将他的方法完全彻底公开,但已公开的内容或许能给我们带来如何用人工智能炒股的启迪。

我终于跑赢了标准普尔 500 指数 10 个百分点!听起来可能不是很多,但是当我们处理的是大量流动性很高的资本时,对冲基金的利润就相当可观。更激进的做法还能得到更高的回报。

这一切都始于我阅读了 Gur Huberman 的一篇题为《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的论文。该研究描述了一件发生在 1998 年的涉及到一家上市公司 EntreMed(当时股票代码是 ENMD)的事件:

“星期天《纽约时报》上发表的一篇关于癌症治疗新药开发潜力的文章导致 EntreMed 的股价从周五收盘时的 12.063 飙升至 85,在周一收盘时接近 52。在接下来的三周,它的收盘价都在 30 以上。这股投资热情也让其它生物科技股得到了溢价。但是,这个癌症研究方面的可能突破在至少五个月前就已经被 Nature 期刊和各种流行的报纸报道过了,其中甚至包括《泰晤士报》!因此,仅仅是热情的公众关注就能引发股价的持续上涨,即便实际上并没有出现真正的新信息。”

在研究者给出的许多有见地的观察中,其中有一个总结很突出:

“(股价)运动可能会集中于有一些共同之处的股票上,但这些共同之处不一定要是经济基础。”

我就想,能不能基于通常所用的指标之外的其它指标来划分股票。我开始在数据库里面挖掘,几周之后我发现了一个,其包含了一个分数,描述了股票和元素周期表中的元素之间的“已知和隐藏关系”的强度。

我有计算基因组学的背景,这让我想起了基因和它们的细胞信号网络之间的关系是如何地不为人所知。但是,当我们分析数据时,我们又会开始看到我们之前可能无法预测的新关系和相关性。

如果你使用机器学习,就可能在具有已知和隐藏关系的上市公司的寄生、共生和共情关系之上抢占先机,这是很有趣而且可以盈利的。最后,一个人的盈利能力似乎完全关乎他在生成这些类别的数据时想出特征标签(即概念(concept))的强大组合的能力。

我在这类模型上的下一次迭代应该会包含一个用于自动生成特征组合或独特列表的单独算法。也许会基于近乎实时的事件,这可能会影响那些具有只有配备了无监督学习算法的人类才能预测的隐藏关系的股票组。

⑸ python如何获得股票实时交易数据

使用easyquotation这个库。(不用重复造轮子了)
github地址是:
https://github.com/shidenggui/easyquotation

⑹ 怎么学python爬取财经信息

本程序使用Python 2.7.6编写,扩展了Python自带的HTMLParser,自动根据预设的股票代码列表,从Yahoo Finance抓取列表中的数据日期、股票名称、实时报价、当日变化率、当日最低价、当日最高价。

由于Yahoo Finance的股票页面中的数值都有相应id。

例如纳斯达克100指数ETF(QQQ)
其中实时报价的HTML标记为

[html]view plain

⑺ python实现资产配置(1)----Markowitz 投资组合模型

现假设有A, B, C, D, E五只股票的收益率数据((第二日收盘价-第一日收盘价)/第一日收盘价)), 如果投资人的目标是达到20%的年收益率,那么该如何进行资产配置,才能使得投资的风险最低?

更一般的问题,假设现有x 1 ,x 2 ,...,x n , n支风险资产,且收益率已知,如果投资人的预期收益为goalRet,那么该如何进行资产配置,才能使得投资的风险最低?

1952年,芝加哥大学的Markowitz提出现代资产组合理论(Modern Portfolio Theory,简称MPT),为现代西方证券投资理论奠定了基础。其基本思想是,证券投资的风险在于证券投资收益的不确定性。如果将收益率视为一个数学上的随机变量的话,证券的期望收益是该随机变量的数学期望(均值),而风险可以用该随机变量的方差来表示。

对于投资组合而言,如何分配各种证券上的投资比例,从而使风险最小而收益最大?

答案是将投资比例设定为变量,通过数学规划,对每一固定收益率求最小方差,对每一个固定的方差求最大收益率,这个多元方程的解可以决定一条曲线,这条曲线上的每一个点都对应着最优投资组合,即在给定风险水平下,收益率最大,这条曲线称作“有效前沿” (Efficient Frontier)。

对投资者而言,不存在比有效前沿更优的投资组合,只需要根据自己的风险偏好在有效前沿上寻找最优策略。
简化后的公式为:

其中 p 为投资人的投资目标,即投资人期待的投资组合的期望值. 目标函数说明投资人资产分配的原则是在达成投资目标 p 的前提下,要将资产组合的风险最小化,这个公式就是Markowitz在1952年发表的'Portfolio Selection'一文的精髓,该文奠定了现代投资组合理论的基础,也为Markowitz赢得了1990年的诺贝尔经济学奖. 公式(1)中的决策变量为w i , i = 1,...,N, 整个数学形式是二次规划(Quadratic Programming)问题,在允许卖空的情况下(即w i 可以为负,只有等式约束)时,可以用拉格朗日(Lagrange)方法求解。

有效前缘曲线如下图:

我们考虑如下的二次规划问题

运用拉格朗日方法求解,可以得到

再看公式(1),则将目标函数由 min W T W 调整为 min 1/2(W T W), 两问题等价,写出的求解矩阵为:

工具包: CVXOPT python凸优化包
函数原型: CVXOPT.solvers.qp(P,q,G,h,A,b)

求解时,将对应的P,q,G,h,A,b写出,带入求解函数即可.值得注意的是输入的矩阵必须使用CVXOPT 中的matrix函数转化,输出的结果要使用 print(CVXOPT.solvers.qp(P,q,G,h,A,b)['x']) 函数才能输出。

这里选取五支股票2014-01-01到2015-01-01的收益率数据进行分析.
选取的五支股票分别为: 白云机场, 华夏银行, 浙能电力, 福建高速, 生益科技

先大体了解一下五支股票的收益率情况:

看来,20%的预期收益是达不到了。

接下来,我们来看五支股票的相关系数矩阵:

可以看出,白云机场和福建高速的相关性较高,因为二者同属于交通版块。在资产配置时,不利于降低非系统性风险。

接下来编写一个MeanVariance类,对于传入的收益率数据,可以进行给定预期收益的最佳持仓配比求解以及有效前缘曲线的绘制。

绘制的有效前缘曲线为:

将数据分为训练集和测试集,并将随机模拟的资产配比求得的累计收益与测试集的数据进行对比,得到:

可以看出,在前半段大部分时间用Markowitz模型计算出的收益率要高于随机模拟的组合,然而在后半段却不如随机模拟的数据,可能是训练的数据不够或者没有动态调仓造成的,在后面写策略的时候,我会加入动态调仓的部分。

股票分析部分:

Markowitz 投资组合模型求解

蔡立专:量化投资——以python为工具. 电子工业出版社

⑻ 用Python中的蒙特卡洛模拟两支股票组成的投资组合的价格趋势分析

蒙特卡洛模拟是一种模拟把真实系统中的概率过程用计算机程序来模拟的方法。对于投资组合的价格趋势分析,可以使用Python中的蒙特卡洛模拟。首先,回顾投资组合的价格趋势。投资组合中的股票价格的趋势是受多种因素影响的,可分为经济、政治和技术因素,其中经济因素最重要。因此,蒙特卡洛模拟可以模拟这些因素对投资组合价格趋势的影响,并通过计算机绘制投资组合价格趋势的曲线。
Python中的蒙特卡洛模拟首先需要计算投资组合中各股票价格的每一期的收益率,其次,计算出投资组合的收益率;随后,计算预测投资组合的期权价格,并将所有的期权价格叠加起来,从而绘制投资组合的价格曲线。最后,在投资组合的价格曲线的基础上,可以分析投资组合在不同时期的价格走势,并进行投资组合结构的调整,从而获得最优投资组合。

⑼ 如何获取实时的股票数据

估计你是盘中炒股需要吧?多数股票软件都有公式系统,例如大智慧、同花顺、通达信,都有公式系统,在公式系统中编写自己的公式,就可以得到自己需要的实时的股票数据了。这些都是免费的。

如果是公司,有专门提供股票行情API接口的,例如微盛的金融实时行情API接口,但这种接口需要程序员才能使用,比较专业。

阅读全文

与Python股票收益率数据相关的资料

热点内容
其久软件股票行 浏览:384
上市公司员工股票变现结汇 浏览:539
控股公司回购股票授予员工 浏览:502
如何查看一只股票股东数量 浏览:607
公司解聘员工激励股票怎么赔偿 浏览:475
股票开盘价和涨停价一样 浏览:668
今日矛台股票最新价格多少 浏览:344
底部放量资金流出的股票 浏览:17
吉村银行股票 浏览:252
闻泰科技股票2020年净利润 浏览:530
仙人掌股票软件怎么样 浏览:710
悦心健康股票业绩 浏览:858
广西德福特科技有限公司股票代码 浏览:976
选择国际etf的股票代码 浏览:653
猪累股票走势 浏览:805
农业银行股农业银行股票行情走势 浏览:41
兴业股票软件 浏览:902
香港联交所发行债券还是股票 浏览:725
股票地方银行龙头股 浏览:77
值得信赖的证券网站股票 浏览:215