‘壹’ 时间序列模型 - 也谈其在计量经济学中的应用1
在金融数据分析中,特别是在股票市场预测中,时间序列模型扮演着重要角色。这类模型的核心目标是利用过去的股票价格来预估未来的走势,因此,时间序列分析成为不可或缺的工具。
首先,我们关注的是股票价格,特别是收盘价。计算价格趋势时,通常使用开盘价和收盘价的差值,但要排除突发价格波动,通过调整数据以获得平滑趋势。然后,进入时间序列模型的世界,它在统计学分析中颇具挑战性。常见的模型包括自回归模型(AR)、滑动平均模型(MA)以及它们的组合ARMA和ARIMA,后者是前两者在差分处理上的进一步应用。
AR模型基于稳定的前提,通过线性回归拟合历史数据,例如,若预测周三的价格,模型会考虑周二和周一的数据。而在MA模型中,没有线性回归,而是当前数据作为过去时间段内平均值的体现,与AR的最大区别在于其对稳定性假设的不同。ARMA模型结合了AR和MA,分别描述数据的长期趋势和随机波动。ARIMA则在此基础上引入了差分的概念,以确保数据的稳定性。
Python的statsmodels库提供了这些模型的实现,如AR函数、ARMA和ARIMA函数,帮助我们进行实际的模型构建和预测。在实际研究中,确保数据的稳定性是至关重要的,可以通过Augmented Dickey Fuller Test进行检验。