❶ 正太分布问题
正态分布,不是正太分布
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;
一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
个人资产受限较多,如国家政策,个人能力,社会环境等,人为因素太大,一般不遵循正态分布
❷ afp股票收益率正态分布
股票收益率并不是正态分布,而是相比正态分布,还具有尖峰厚尾,波动聚集等特征,这很正常,因为并不是说就一定要正态,假定正态能够方便。
❸ 股票收益率服从正态分布,这种假设合理吗
其实也有点道理,里大盘越近,追踪大盘越紧的收益率越高!希望能够认可。
❹ 《超简交易》连载5:正态分布与均值回归
一、正态分布
正态分布(Normal distribution),也称常态分布,是统计学中最重要的一种概率分布。正态分布概念是由德国数学家与天文学家Moivre于1733年首次提出的,但由于德国数学Gauss(C.F.Gauss,1777-1855)率先将其应用于天文学研究,故此正态分布又称高斯分布(Gaussian distribution),是统计学中最重要的一种概率分布。
正态分布描述的是某件事出现不同结果的概率分布情况,属于一般规律。正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。钟形曲线的特点是:两头低,中间高,左右对称,曲线与横轴间的面积总等于1。如下图所示:
例如:假设抽样调查了一个学校100名18岁男大学生身高(cm),身高为随机变量、相互独立,服从正态分布。身高的均值μ为172.70cm,标准差σ=4.01cm。这说明:均值μ代表了这些男大学生身高的期望值(或平均身高),中等身高的人比较多,而特别高的和特别低的人比较少。均值μ加减一个标准差σ会有68.27%的男大学生身高处于这个范围,均值μ加减1.96个标准差σ会有95%的男大学生身高处于这个范围,均值μ加减2.58个标准差σ会有99%的男大学生身高处于这个范围。
正态分布对我们有什么意义呢?与正态分布关系紧密的一个现象是“均值回归”。
均值回归(Mean Reversion)是以正态分布假设为基础,认为事物在长期的变化过程中,总有向“平衡位置”(或均值位置)靠拢的倾向。“均值回归”现象是英国人弗朗西斯·高尔顿(FrancisGalton,1822-1911)发现的。高尔顿出身名门,与着名的查尔斯·达尔文(Charles Robert Darwin,1809-1882)是堂兄弟。
大约1875年,高尔顿用一种甜豌豆种子做实验,经过大量、艰辛的实验,高尔顿发现,母豌豆的直径变化范围比子豌豆直径的变化范围要大很多。母豌豆平均直径为0.18英寸,其变化范围为0.15~0.21英寸,或者说在平均值0.18英寸两侧各0.03英寸之内。子豌豆的平均直径为0.163英寸,其变化范围是0.154~0.173英寸,或者说是仅在平均值0.163英寸两边各0.01英寸范围内变动。子豌豆直径的分布比母豌豆直径的分布更为紧凑。
这种回归,在自然界是非常必要的。因为如果这种回归的进程不存在的话,那么,大豌豆会繁殖出更大的豌豆,小的豌豆会繁殖出更小的豌豆……如果这样,这个世界就会两极化,只有侏儒和巨人。大自然会使每一代变得越来越畸形,最终达到我们无法接受的极端。均值回归原理适用于日常生活,比如在体育运动方面,人人都有一个平均水平,只是有时会超水平发挥,有时会低于平均水平。任何一连串的重复活动,其结果通常都会接近平均值或中间值。
例如:打网球时连续挥拍24次,如果有一个球打得特别好,下一个球及可能有点拖泥带水。如果不小心打了一记球,下一个球通产会打得漂亮一点。均值回归原理在自然领域获得了验证,它又与一些社会现象颇为相似,例如:“天下大事,分久必合,合久必分”、“繁荣的必将衰亡,衰亡的必将繁荣”、“富不过三代”、“君子之泽,五世而斩”……等等。
均值回归原理也激发了各种风险承担和预测理论的产生。在圣经中,当约瑟夫对法老王预言“七个富年后必是七个荒年”的时候,他一定已经知道这是事物注定的规律了。而当J.P.摩根认为“市场是波动的”的时候,他所要表达的也正是这个意思。乔治·索罗斯也说:“凡事总有盛极而衰的时候,大好之后便是大坏”。
正如大多数人类活动一样,股市中价格的均值回归从理论上讲具有必然性。因为有一点是可以肯定的,股票价格不能总是上涨或下跌,一种趋势不管其持续的时间多长都不能永远持续下去。在一个趋势内,股票价格呈持续上升或下降,我们称之为均值偏离(Mean Aversion,也叫均值回避)。当出现相反趋势时就呈均值回归(Mean Reversion)。
这也是许多投资者所坚信的信条:当他们说某只股票已经“高估”或者“低估”时,他们指的是恐惧和贪婪使得人们推动股价远离了它的“内在价值”,但是股价最终是要回归的。
二、何时回归
巴菲特:“我觉得要预测会发生什么比较简单,但预测何时发生会比较困难”。“内在价值”,也许真的会“回归”,但关键在于什么时候回归。
不同的股票市场,回归的周期不一样,就是对同一个股票市场来说,每次回归的周期也不一样。有时,长期趋势来得太迟,即便均值回归原理发挥了作用,也无法拯救我们了。到目前为止,均值回归原理仍不能预测的是回归的时间间隔,即回归的周期“随机漫步”。
一次,经济学家凯恩斯说道:“先生们,从长远来看,我们都会死掉的。”如果在狂风暴雨的季节里,经济学家仅能预言:很久后风暴会过去的,一切又会恢复平静的,那么,他们的工作就太简单、太无用了。如果一个人永远强调房价会跌(或股价会涨),那么这人更适合做民意代表,而不是预测者。从长远看,没有只涨不跌的商品。如果不顾事实,永远说会跌,这个猜硬币正反有何区别?只要不改口,硬币总有出反面的时候。
难道均值回归只是一种中看不中用的理论吗?在后续章节中,将会给出变通的方法,讲述如何利用均值回归原理,来捕捉行情走势的波动。
三、回归何处
均值回归是一个简单的概念:身材非常高的父母所生的孩子,一般会比他们的父母矮;而身材非常矮的父母所生的孩子,一般会比他们的父母高。对于大多数人来说,这是个很容易理解的概念。将这个观点应用到证券价格的波动中,意味着证券价格会返回到平均值。
但是,我们遇到一个问题,身高的反转是两代人之间的生理现象,而价格反转是一个实时的动态过程。还有一个重要问题就是“均值”怎么确定。均值本身到底是多少,在经济生活中却是个很模糊的数字。昨天的均值很可能被今天新的正常值所取代,而我们对这个正常值却一无所知。如果仅仅因为过去的经验,认为会回归到原来的均值上去,那是很危险的事情。
有人认为巴菲特是价值投资理念,也是基于均值回归原理,但是学巴菲特的人多如牛毛,能够成功的鲜如牛角。查理·芒格作为沃伦·巴菲特的最佳拍档,有“幕后师爷”和“终极秘密武器”之称。
有人曾问:如何评估一只股票的“内在价值”?
芒格回答:搞清一只股票的“内在价值”,远比成为一个鸟类学家难得多。
依靠均值回归预测未来是十分危险的,因为均值本身就变化不定。
揭露交易本质,奋斗财富自由。
更多精彩(金融、交易、股票、技术分析…)内容欢迎关注知道日报作者/公众号:超简交易
❺ 股市K线中的正态分部是什么
一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。 服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
❻ 请问股票K线图中的分时图、日K线、周K线、月K线、动态日K、三年分时图
看股票K线是股民炒股时常用的一种方法。股市一直是风险比较大的,可以用K线找一些“规律”,分析股票找到“规律”才能更好的投资,获得收益。
来给朋友们讲解一下K线,教大家如何分析它。
分享之前,先免费送给大家几个炒股神器,能帮你收集分析数据、估值、了解最新资讯等等,都是我常用的实用工具,建议收藏:炒股的九大神器免费领取(附分享码)
一、 股票K线是什么意思?
K线图我们也将他们叫做蜡烛图、日本线、阴阳线等,最常见的叫法是--K线,它最早是用来计算米价每天的涨跌,之后股票、期货、期权等证券市场都有它的一席之地。
影线和实体构成形为柱状的k线。影线在实体上方的部分叫上影线,下方的部分叫下影线,实体分阳线和阴线。
Ps:影线代表的是当天交易的最高和最低价,实体表示的是当天的开盘价和收盘价。
其中红色、白色柱体或者黑框空心都可用来表示阳线,然而阴线大多是选用绿色、黑色或者蓝色实体柱,
除了讲的这些以外,“十字线”被我们看到时,就是实体部分转换成一条线。
其实十字线很好理解,其实就是收盘的价格和开盘时一样。
将K线研究透,我们可以敏锐地找出买卖点(对股市方面虽然说是没有办法预测的,但是K线对于指导方面仍然是有作用的),对于新手来说也是最好操控的。
这里有一方面大家应该主要关注一下,K线分析比较复杂,若是你刚开始炒股,K线方面也不清楚的话,建议用一些辅助工具来帮你判断一只股票是否值得买。
比如说下面的诊股链接,输入你中意的股票代码,就能自动帮你估值、分析大盘形势等等,我刚开始炒股的时候就用这种方法来过渡,非常方便:【免费】测一测你的股票当前估值位置?
下面我来简单讲解几个K线分析的小技巧,帮助你快速进入初级阶段。
二、怎么用股票K线进行技术分析?
1、实体线为阴线
股票成交量是怎样的,这个时候是我们要重视的,如果成交量不大的话,那就代表股价可能会短期下降;如果成交量很大,那就完了,估计股价要长期下跌了。
2、实体线为阳线
实体线为阳线就表示股价上涨空间更大,至于是否是长期上涨,还是需要结合一些其他指标进行判断。
比如说大盘形式、行业前景、估值等等因素/指标,但是由于篇幅问题,不能展开细讲,大家可以点击下方链接了解:新手小白必备的股市基础知识大全
应答时间:2021-09-24,最新业务变化以文中链接内展示的数据为准,请点击查看
❼ 为什么股票价格服从对数正态分布
我们可以假设连续复利,用lnS1-lnS0来近似股票的收益(S1-S0)/S0,而且根据集合布朗运动可知,此收益是服从正态分布的。
❽ 为什么假设股票价格服从正态分布是不现实的
有一个最基本的想法,如果股票符合正态分布,那么,会怎样?因为趋势已定,所有人都可以在股票价格变动前预测到股票将来的价格走势。投资将成为一件没有任何意义的事情。
另外,股票价格会受到企业的发展、经济的环境、政策的走势以及人们的心理波动影响。所以,其价格出现非规律变化、非正太分布的波动是非常正常的。
❾ 服从正态分布的条件
当现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的.但是最好有实验数据,做正态性检测,才能准确的判断粗略判断的话你说那三个都是(正常情况下,比如第一个球队里不能都是超人,第二个那人不能是吸血鬼之类),因为这些事情的结果受到很多条件的限制,比如球队那个会受到比方说天气、球员发挥状况、对手球队的状况、甚至这支球队使用的球鞋的性能等等,可以列举出大量的对结果有影响的微小因素,那么整体就近似服从正态分布。你应该记得引入正态分布的实验是一个个小球往下滚碰到钉子的,这个实验之所以说是近似服从正态分布就是因为碰到每个钉子后的结果都可以看做微小分布,所以大量微小因素的影响形成累积,从而导致结果服从正态分布。当然,精确的判断要借助正态性检验,作出正态概率图进行检验,这就要专业知识和软件咯,如果你有兴趣可以再去查查,统计学里的。