导航:首页 > 主力排名 > 蒙特卡洛计算股票投资风险

蒙特卡洛计算股票投资风险

发布时间:2022-06-16 16:40:21

① 什么是蒙特卡洛分析

蒙特卡罗分析法(统计模拟法),是一种采用随机抽样统计来估算结果的计算方法,可用于估算圆周率,由约翰·冯·诺伊曼提出。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。

利用蒙特卡罗分析法可用于估算圆周率,如图,在边长为 2 的正方形内作一个半径为 1 的圆,正方形的面积等于 2×2=4,圆的面积等于 π×1×1=π,由此可得出,正方形的面积与圆形的面积的比值为 4:π。

现在让我们用电脑或轮盘生成若干组均匀分布于 0-2 之间的随机数,作为某一点的坐标散布于正方形内,那么落在正方形内的点数 N 与落在圆形内的点数 K 的比值接近于正方形的面积与圆的面积的比值,即,N:K ≈ 4:π,因此,π ≈ 4K/N 。

用此方法求圆周率,需要大量的均匀分布的随机数才能获得比较准确的数值,这也是蒙特卡罗分析法的不足之处。

(1)蒙特卡洛计算股票投资风险扩展阅读:

使用蒙特·卡罗方法进行分子模拟计算是按照以下步骤进行的:

1. 使用随机数发生器产生一个随机的分子构型。

2. 对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。

3. 计算新的分子构型的能量。

4. 比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。

若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼因子,并产生一个随机数。

若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。 若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。

5. 如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。

项目管理中蒙特·卡罗模拟方法的一般步骤是:

1.对每一项活动,输入最小、最大和最可能估计数据,并为其选择一种合适的先验分布模型;

2.计算机根据上述输入,利用给定的某种规则,快速实施充分大量的随机抽样

3.对随机抽样的数据进行必要的数学计算,求出结果

4.对求出的结果进行统计学处理,求出最小值、最大值以及数学期望值和单位标准偏差

5.根据求出的统计学处理数据,让计算机自动生成概率分布曲线和累积概率曲线(通常是基于正态分布的概率累积S曲线)

6.依据累积概率曲线进行项目风险分析。

② 蒙特卡洛分析是什么

定量分析技术(例如蒙特卡罗模拟)可以通过潜在结果的概率分布帮助项目经理做出决策。

蒙特卡洛模拟技术在很大程度上依赖关键变量的随机性来解决问题。除了关键参数,我们还需要了解它们之间的关系以及足够的数据以进一步分析。

要想深入了解程序管理中的蒙特卡罗模拟让我们用大多数人熟悉的案例研究使用MS Excel进行一个实验。

案例研究

Shubham是XYZ公司的首席执行官。在发布计划之后,他的团队致力于为客户提供关键功能。Mohit是该公司的项目经理,根据他一直跟踪的风险和工作进度总结,已经确定了在达到目标交付日期方面的挑战
步骤1:确定随机数种子

在我们的场景中,因为我们知道最低的速度(Velocity)和最高速度(Velocity),我们可以得出:MIN (最后3次冲刺的实际速度)+RAND()*(MAX(最后3次冲刺的实际速度)-MIN (最后3次冲刺的实际速度))

我们可以选择任何函数(例如添加风险或范围参数),但为了简单起见,选择这个函数作为通常考虑调整大小时涉及的工作、复杂性和不确定性的速度。

步骤2:设置试验

行业标准表明,蒙特卡罗模拟至少有10000次运行。由于我们无论如何都在Excel中进行,因此我们可以进行15000次运行(或更多)。设置一个1至15000的试验列。

步骤3:随机运行

为第一次运行作为种子函数设置速度(Velocity)的另一列(如步骤1中所述)。我们现在有两个15000列,采用运行值填充第一列,第二列填充第一次运行的值。

③ 蒙特卡洛模拟法

蒙特卡洛模拟技术,是用随机抽样的方法抽取一组满足输入变量的概率分布特征的数值,输入这组变量计算项目评价指标,通过多次抽样计算可获得评价指标的概率分布及累计概率分布、期望值、方差、标准差,计算项目可行或不可行的概率,从而估计项目投资所承担的风险。

蒙特卡洛模拟的步骤如下:

第一步,通过敏感性分析,确定风险变量。

第二步,构造风险变量的概率分布模型。

第三步,为各输入风险变量抽取随机数。

第四步,将抽得的随机数转化为各输入变量的抽样值。

第五步,将抽样值组成一组项目评价基础数据。

第六步,根据基础数据计算出评价指标值。

第七步,整理模拟结果所得评价指标的期望值、方差、标准差和它的概率分布及累计概率,绘制累计概率图,计算项目可行或不可行的概率。

蒙特卡洛模拟程序如图7-26所示。

图7-26 蒙特卡洛模拟程序图

【实训Ⅷ】某项目建设投资为1亿元,流动资金1000 万元,项目两年建成,第三年投产,当年达产。不含增值税年销售收入为5000万元,经营成本2000万元,附加税及营业外支出每年为50万元,项目计算期12 a。项目要求达到的项目财务内部收益率为15%,求内部收益率低于15%的概率。

由于蒙特卡洛模拟的计算量非常大,必须借助计算机来进行。本案例通过手工计算,模拟20次,主要是演示模拟过程。

(1)确定风险变量。通过敏感性分析,得知建设投资、产品销售收入、经营成本为主要风险变量。流动资金需要量与经营成本线性相关,不作为独立的输入变量。

(2)构造概率分布模型。建设投资变化概率服从三角形分布,其悲观值为1.3亿元、最大可能值为1亿元、乐观值为9000万元,如图7-27所示。年销售收入服从期望值为5000万元、σ=300万元的正态分布。年经营成本服从期望值为2000万元、σ=100 万元的正态分布。

图7-27 投资三角形分布图

建设投资变化的三角形分布的累计概率,见表7-16及图7-27所示。

表7-16 投资额三角形分布累计概率表

(3)对投资、销售收入、经营成本分别抽取随机数,随机数可以由计算机产生,或从随机数表中任意确定起始数后,顺序抽取。本例从随机数表(表7-20)中抽取随机数。假定模拟次数定为k=20,从随机数表中任意从不同地方抽取三个20 个一组的随机数,见表7-17。

表7-17 输入变量随机抽样取值

(4)将抽得的随机数转化为各随机变量的抽样值。

这里以第1组模拟随机变量产生做出说明。

1)服从三角形分布的随机变量产生方法。

根据随机数在累计概率表(表7-16)或累计概率图(图7-28)中查取。投资的第1个随机数为48867万元,查找累计概率0.48 867所对应的投资额,从表7-16中查得投资额在10300与10600之间,通过线性插值可得

第1个投资抽样值=10300+300×(48867-39250)/(52000-39250)=10526万元

2)服从正态分布的随机变量产生方法。

从标准正态分布表(表7-21)中查找累计概率与随机数相等的数值。例如销售收入第1个随机数06242,查标准正态分布表得销售收入的随机离差在-1.53与-1.54之间,经线性插值得-1.5348。

图7-28 投资的累计概率分布图

第1个销售收入抽样值=5000-1.5348×300≈4540万元。

同样,经营成本第一个随机数66 903相应的随机变量离差为0.4328,第一个经营成本的抽样值=2000+100×0.4328=2043万元。

3)服从离散型分布的随机变量的抽样方法。

本例中没有离散型随机变量。另举例如下,据专家调查获得的某种产品售价的概率分布见表7-18。

表7-18 某种产品售价的概率分布

根据上表绘制累计概率如图7-29所示。

若抽取的随机数为43252,从累计概率图纵坐标上找到累计概率为0.43252,划一水平线与累计概率折线相交的交点的横坐标值125元,即是售价的抽样值。

(5)投资、销售收入、经营成本各20个抽样值组成20组项目评价基础数据。

(6)根据20组项目评价基础数据,计算出20 个计算项目评价指标值,即项目财务内部收益率。

(7)模拟结果达到预定次数后,整理模拟结果按内部收益率从小到大排列并计算累计概率,见表7-19所示。

从累计概率表可知内部收益率低于15%的概率为15%,内部收益率高于15%的概率为85%。

图7-29 售价累计概率曲线

表7-19 蒙特卡洛模拟法累积概率计算表

①每次模拟结果的概率=1/模拟次数。

④ 蒙特卡洛模拟用于风险分析

蒙特卡洛模拟是风险评价、评估中常用的一种方法。

主要用于,当在项目评价中输入的随机变量个数多于3个,每个输入变量可能出现3个以上以致无限多种状态时(如连续随机变量),就不能用理论计算法进行风险分析,这时就必须采用蒙特卡洛模拟技术。

方法的原理,是用随机抽样的方法抽取一组输入变量的数值,并根据这组输入变量的数值计算项目评价指标(如NPV,FIRR),用这样的方法抽样计算足够多的次数可获得评价指标的概率分布及累计概率分布、期望值(MEAN)、方差(S)、标准差(STD DEV),计算项目有可行转变为不可行的概率,从而估算项目投资所承受的风险。

运行程序:

1.确定风险分析采用的评价指标。

2.确定对评价指标有重要影响的输入变量(unit cost,Inflation Rate,tax rate)

3.确定输入变量的概率分布。

4.为各输入变量独立抽取随机数。

5.随机数转化为输入变量的抽样值。

6.根据抽样值,组成一组项目评价基础数据。

7.根据基础数据,计算出评价指标。

8.重复4-7,直至预定模拟次数。

9.整理模拟结果所得评价指标的,MEAN,S,STV DEV,和期望值的概率分布。

10.计算项目由可行转变为不可行的概率。

注:Inflation Rate 通货膨胀率

MEAN 期望值;S 方差; STV DEV 标准差。http://hi..com/weifenghoho

⑤ 什么是蒙特卡洛模拟( Monte Carlo simulation)

蒙特卡洛模拟又称为随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。

蒙特卡洛随机模拟法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。

蒙特卡洛随机模拟法 - 实施步骤抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。

(5)蒙特卡洛计算股票投资风险扩展阅读

基本原理思想

当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。

蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。


⑥ 蒙特卡洛 模拟法 计算var 的公式是什么

更为确切的是指,在一定概率水平(置信度)下,某一金融资产或证券组合价值在未来特定时期内的最大可能损失。用公式表示为: Prob(△Ρ<VAR)=1-α 其中Prob表示:资产价值损失小于可能损失上限的概率。 △Ρ表示:某一金融资产在一定持有期△t的价值损失额。 VAR表示:给定置信水平α下的在险价值,即可能的损失上限。 α为:给定的置信水平。 VAR从统计的意义上讲,本身是个数字,是指面临“正常”的市场波动时“处于风险状态的价值”。即在给定的置信水平和一定的持有期限内,预期的最大损失量(可以是绝对值,也可以是相对值)。例如,某一投资公司持有的证券组合在未来24小时内,置信度为95%,在证券市场正常波动的情况下,VaR 值为800万元。其含义是指,该公司的证券组合在一天内(24小时),由于市场价格变化而带来的最大损失超过800万元的概率为5%,平均20个交易日才可能出现一次这种情况。或者说有95%的把握判断该投资公司在下一个交易日内的损失在800万元以内。5%的机率反映了金融资产管理者的风险厌恶程度,可根据不同的投资者对风险的偏好程度和承受能力来确定。 VAR的计算系数 由上述定义出发,要确定一个金融机构或资产组合的VAR值或建立VAR的模型,必须首先确定以下三个系数:一是持有期间的长短;二是置信区间的大小;三是观察期间。 1、持有期。持有期△t,即确定计算在哪一段时间内的持有资产的最大损失值,也就是明确风险管理者关心资产在一天内一周内还是一个月内的风险价值。持有期的选择应依据所持有资产的特点来确定比如对于一些流动性很强的交易头寸往往需以每日为周期计算风险收益和VaR值,如G30小组在1993年的衍生产品的实践和规则中就建议对场外OTC衍生工具以每日为周期计算其VaR,而对一些期限较长的头寸如养老基金和其他投资基金则可以以每月为周期。 从银行总体的风险管理看持有期长短的选择取决于资产组合调整的频度及进行相应头寸清算的可能速率。巴塞尔委员会在这方面采取了比较保守和稳健的姿态,要求银行以两周即10个营业日为持有期限。 2、置信水平α。一般来说对置信区间的选择在一定程度上反映了金融机构对风险的不同偏好。选择较大的置信水平意味着其对风险比较厌恶,希望能得到把握性较大的预测结果,希望模型对于极端事件的预测准确性较高。根据各自的风险偏好不同,选择的置信区间也各不相同。比如J.P. Morgan与美洲银行选择95%,花旗银行选择95.4%,大通曼哈顿选择97.5%,Bankers Trust选择99%。作为金融监管部门的巴塞尔委员会则要求采用99%的置信区间,这与其稳健的风格是一致的。 3、第三个系数是观察期间(Observation Period)。观察期间是对给定持有期限的回报的波动性和关联性考察的整体时间长度,是整个数据选取的时间范围,有时又称数据窗口(Data Window)。例如选择对某资产组合在未来6个月,或是1年的观察期间内,考察其每周回报率的波动性(风险) 。这种选择要在历史数据的可能性和市场发生结构性变化的危险之间进行权衡。为克服商业循环等周期性变化的影响,历史数据越长越好,但是时间越长,收购兼并等市场结构性变化的可能性越大,历史数据因而越难以反映现实和未来的情况。巴塞尔银行监管委员会目前要求的观察期间为1年。 综上所述,VaR实质是在一定置信水平下经过某段持有期资产价值损失的单边临界值,在实际应用时它体现为作为临界点的金额数目。

阅读全文

与蒙特卡洛计算股票投资风险相关的资料

热点内容
十一之后股票走势 浏览:681
赛为智能股票如何走向 浏览:641
衡量股票价值的主要指标 浏览:636
股票为什么开盘前就涨停 浏览:999
股票投资性格测试 浏览:574
申通快递2018年股票走势图 浏览:24
新加坡股票最新行情 浏览:663
平安证券是买股票的吗 浏览:637
宏伟科技股票价格 浏览:388
某股票日收盘价数据 浏览:81
股票st江特今天涨停了吗 浏览:257
投资者投资于股票的收入来源有 浏览:798
买股票必须到债券公司开户嘛 浏览:821
关于bim软件的股票 浏览:939
历年第一只高送转股票 浏览:593
医疗板块股票前景 浏览:680
七彩虹科技股票 浏览:302
股票大资金战场 浏览:146
外运发展退市手里股票咋办 浏览:856
1992中国股票 浏览:479