A. 聚类分析算法论文
聚类分析算法论文
聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。下面是我分享给大家的聚类分析算法论文,欢迎阅读。
一、引言
聚类分析算法是给定m维空间R中的n个向量,把每个向量归属到k个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。聚类可以理解为:类内的相关性尽量大,类间相关性尽量小。聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数据规律。聚类分析的基本思想是:采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系。盐矿区系统是一个多层次、复杂的大系统,涉及诸多模糊、不确定的因素。平顶山市盐矿区的经济分类是以整个平顶山市的所有盐矿区为研究对象,以各盐矿区为基本单元,以经济为中心,以发展战略和合理布局为目标进行经济类型区划。其基本原则是:平顶山市的盐矿区资源开发、利用的相对一致性;自然、经济、社会条件的一致性;保持一定行政地域单元的相对稳定性。现行的平顶山市盐矿区行政划分不能反映出各个盐矿区的共同点,有必要通过模糊聚类分析将那些经济实际状况相似的铁矿区归类,剖析、发现各况矿区的差异,对症下药,为制定发展对策提供依据。
二、建立指标体系
1、确定分类指标进行经济区划分,应考虑的指标因素是多种多样的。既要以岩盐矿资源储量为主,又要适当考虑岩盐质量和勘察阶段和开发利用状况;既要有直接指标,又要有间接指标;既要考虑矿区发展的现状,又要考虑矿区发展的过程和矿区发展的未来方向。参考有关资料,结合专家意见,我们确定了对平顶山市盐矿区进行经济区划分的指标。如表1所示。表中列举了具体指标及各指标的原始数据(数据来源于河南省2006年矿产资源储量简表)。表1盐矿区经济划分指标体系及指标数据注:表中N表示缺失数据,勘察阶段1、2、3分别表示:初步勘探、详细普查、详细勘探,利用状况1~7分别表示:近期不宜进一步工作、可供进一步工作、近期难以利用、推荐近期利用、计划近期利用、基建矿区、开采矿区。
2、转换指标数据由于不同变量之间存在不同量纲由于不同变量之间存在不同量纲、不同数量级,为使各个变量更具有可比性,有必要对数据进行转换。目前进行数据处理的方法大致有三种,即标准化、极差标准化和正规化。为便于更直观的比较各市之间同一指标的数值大小,我们采用了正规化转换方式。其计算公式为:为了方便叙述,做如下设定:设Xi(i=1,2,3,…,21)为具体指标层中第i个评价指标的值,Pi(i=1,2,3,…,21)为第i个指标正规化后的值,0≤Pi≤1,Xs,i(Xs,i=Xmax-Xmin),为第i个评价指标的标准值,Xmax为最大值,Xmin为最小值。(1)对于越高越好的`指标①Xi≥Xmax,则Pi=1;②Xi≤Xmin,则Pi=0;③Xmin<Xi<Xmax,则其计算式为:Pi=Xi-Xmin/Xs,i(2)对于越低越好的指标①2Xi≤Xmin,则Pi=1;②Xi≥Xmax,则Pi=0;③Xmin<Xi<Xmax,则其计算式为:Pi=Xmax-Xi/Xs,i所有参与聚类分析的指标数据见表2。
三、聚类分析
1、聚类步骤(Stage).从1~3表示聚类的先后顺序。
2、个案合并(ClusterCombined)。表示在某步中合并的个案,如第一步中个案1叶县田庄盐矿段和个案2叶县马庄盐矿段合并,合并以后用第一项的个案号表示生成的新类。
3、相似系数(Coefficients).据聚类分析的基本原理,个案之间亲密程度最高即相似系数最接近于1的,最先合并。因此该列中的系数与第一列的聚类步骤相对应,系数值从小到大排列。
4、新类首次出现的步骤(StageClusterFirstAppears)。对应于各聚类步骤参与合并的两项中,如果有一个是新生成的类(即由两个或两个以上个案合并成的类),则在对应列中显示出该新类在哪一步第一次生成。如第三步中该栏第一列显示值为1,表示进行合并的两项中第一项是在第一步第一次生成的新类。如果值为O,则表示对应项还是个案(不是新类)。
5、新类下次出现步骤(NextStage)。表示对应步骤生成的新类将在第几步与其他个案或新类合并。如第一行的值是11,表示第一步聚类生成的新类将在第11步与其他个案或新类合并。
6、解析图DendrogramusingAverageLinkage(BetweenGroups)聚类树状图(方法:组间平均连接法)图清晰的显示了聚类的全过程。他将实际距离按比例调整到0~25之间,用逐级连线的方式连接性质相近的个案或新类,直至并未一类。在该图上部的距离标尺上根据需要(粗分或细分)选定一个划分类的距离值,然后垂直标尺划线,该垂线将与水平连线相交,则相交的交点数即为分类的类别数,相交水平连线所对应的个案聚成一类。例如,选标尺值为5,则聚为3类:叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段为一类,叶县姚寨盐矿为一类。若选标尺值为10,则聚为2类:叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段、叶县姚寨盐矿为一类。
四、结论
对平顶山市5个盐矿区进行经济区划分,究竟划分为几个区合适,既不是越多越好,也不是越少越好。划分经济区的目的,就是要根据各盐矿经济区资源特点、勘察、开发的不同,分类指导经济活动,使人们的经济活动更加符合当地的实际,使各经济区能充分发挥各自的优势,做到扬长避短,趋利避害,达到投人少、产出多,创造良好的经济效益和社会效益之目的。分区太多,就失去了分区的意义,分区太少,则分类指导很难做到有的放矢。综合以上聚类分析结果,我们可以得出三个方案。其中两个方案比较合适,可供选择。方案一:(当比例尺为5时,分为3类)叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段为一类,叶县姚寨盐矿为一类。从聚类分析中看出平顶山市盐矿区分类图方案一。方案二:(当比例尺为10时,分为2类)叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段、叶县姚寨盐矿为一类。从聚类分析中看出平顶山市盐矿区分类图方案二。平顶山市盐矿区分类图方案2聚类分析的原理就是将矿石质量、资源储量、勘查阶段、利用状况相近或相类似的矿区聚合在一起,其分析结果也是直观易见的。在此结合平顶山市实际行政区划以及矿山企业特征我们对铁矿区划分做一个调整使其理论与实际能够结合的更紧密使其更好的指导实践。
1、叶县田庄盐段、叶县马庄盐矿段为一类,这一类属于矿床规模相当,资源储量接近,勘查开发阶段接近,利用程度相当,故,可以分为一类。
2、叶县娄庄盐矿、叶县五里堡盐矿段为一类,这一类属于勘查开发阶段处于同一阶段。
3、叶县姚寨盐矿为一类,这一类属于储量较高,盐矿品位较高,故其勘察开采规划有别于其它两类。总的说来,运用聚类分析是基本成功的,大部分的分类是符合实际的。综合以上论述盐矿区划分如下表所示:当然聚类分析有其优点也有其缺点:(1)优点:聚类分析模型的优点就是直观,结论形式简明。(2)缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试问内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
;B. 模糊聚类分析的常用分类方法
数据分类中,常用的分类方法有多元统计中的系统聚类法、模糊聚类分析等.在模糊聚类分析中,首先要计算模糊相似矩阵,而不同的模糊相似矩阵会产生不同的分类结果;即使采用相同的模糊相似矩阵,不同的阈值也会产生不同的分类结果.“如何确定这些分类的有效性”便成为模糊聚类的要点。
识别研究中的一个重要问题.文献,把有效性不满意的原因归结于数据集几何结构的不理想.但笔者认为,不同的几何结构是对实际需要的反映,我们不能排除实际需要而追求所谓的“理想几何结构”,不理想的分类不应归因于数据集的几何结构.针对同一模糊相似矩阵,文献建立了确定模糊聚类有效性的方法.用固定的显着性水平,在不同分类的F一统计量和F检验临界值的差中选最大者,即为有效分类.但是,当显着性水平变化时,此方法的结果也会变化.文献引进了一种模糊划分嫡来评价模糊聚类的有效性,并人为规定当两类的嫡大于一数时,此两类可合并,通过逐次合并,最终得到有效分类.此方法人为干预较多,当这个规定数不同时,也会得到不同的结果.另外这两种方法也未比较不同模糊相似矩阵的分类结果. 系统聚类法是基于模糊等价关系的模糊聚类分析法。在经典的聚类分析方法中可用经典等价关系对样本集X进行聚类。设R是 X上的经典等价关系。对X中的两个元素x和y,若xRy或(x,y)∈R,则将x和y并为一类,否则x和y不属于同一类。
相应地,可用X上的模糊等价关系对样本集X进行模糊聚类。设慒是X上的模糊等价关系,是慒 的隶属函数。对于任何α∈【0,1】,定义慒 的α截关系 Sα是X上的经典等价关系。根据Sα得到X 的一种聚类,称为在α水平上的聚类。
应用这种方法,分类的结果与α的取值大小有关。α取值越大,分的类数越多。α小到某一值时,X中的所有样本归并为一类。这种方法的优点在于可按实际需要选取α的值,以便得到恰当的分类。
系统聚类法的步骤如下:
①用数字描述样本的特征。设被聚类的样本集为 X={x1,…,xn}。每个样本均有p种特征,记作xi=(xi1,…,xip);i=1,2,…,n;xip表示描述样本xi的第p个特征的数。 ②规定样本之间的相似系数rij(0≤rij≤1;i,j=1,…,n)。rij描述样本xi与xj之间的差异或相似的程度。rij 越接近于1,表明样本xi与xj之间的差异越小;rij 越接近于0,表明xi与xj之间的差异越大。rij可用主观评定或集体评分的方法规定,也可用公式计算,如采用夹角余弦法、最小最大法、算术平均最小法等。
因为rii=1(xi与自身没有差异),rij=rji(xi与xj之间的差异等同于xj与xi之间的差异),所以由rij(i,j=1,…,n)可得X上的模糊相似关系。
一般,R不具备可传递性,因而R不一定是 X上的模糊等价关系。
③运用合成运算R=R⋅R(或R=R⋅R等)求出最接近相似关系R的模糊等价关系S=R(或R等)。若R已是模糊等价关系,则取S=R。
④选取适当水平α(0≤α≤1),得到X 的一种聚类。 逐步聚类法是一种基于模糊划分的模糊聚类分析法。它是预先确定好待分类的样本应分成几类,然后按最优化原则进行再分类,经多次迭代直到分类比较合理为止。
在分类过程中可认为某个样本以某一隶属度隶属于某一类,又以另一隶属度隶属于另一类。这样,样本就不是明确地属于或不属于某一类。若样本集有 n个样本要分成c类,则它的模糊划分矩阵为此c×n模糊划分矩阵有下列特性:①uij∈【0,1】;i=1,…,c;j=1,…,n。②即每一样本属于各类的隶属度之和为1。③即每一类模糊子集都不是空集。
C. 市场风险溢价是7.5% 无风险利率是4% 股票的期望收益是19% 股票的贝塔系数是多
因为,期望收益率=无风险利率+beta*市场风险溢价。所以,beta=(19%-4%)/ 7.5% = 2。
1.市场风险溢价是主要是在投资里的说法,是相对(几乎)无风险的投资收益而言的,一般无风险收益主要指投资于国债、政府债券和银行储蓄得到的收益,因为其风险几乎为零。
市场常险溢价是指进行有一定风险的投资所要求的除无风险收益外的额外收益,风险越大,所要求的市场风险溢价就越高。
假如你投资一年期国债的收益率为3.5%,而你投资企业债券的收益率一般大于3.5%,假设为8%,那么风险溢价(率)就是8%-3.5%=4.5%,因为投资企业的风险相对较大,所以要求有额外的收益回报。
2.无风险利率是指将资金投资于某一项没有任何风险的投资对象而能得到的利息率。这是一种理想的投资收益。一般受基准利率影响。利率是对机会成本及风险的补偿,其中对机会成本的补偿称为无风险利率。专业点说是对无信用风险和市场风险的资产的投资,指到期日期等于投资期的国债的利率。
3.股票预期收益率是指投资者期望的收益率,有可能达到也有可能达不到,一般在投资者中投资者设置预期收益率,当投资回报达到预期收益时,就会进行止盈。期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。这仅仅是一种期望值,实际收益很可能偏离期望收益。计算公式:HPR=(期末价格 -期初价格+现金股息)/期初价格。
4.β系数也称为贝塔系数(Beta coefficient),是一种风险指数,用来衡量个别股票或股票基金相对于整个股市的价格波动情况。β系数是一种评估证券系统性风险的工具,用以度量一种证券或一个投资证券组合相对总体市场的波动性,在股票、基金等投资术语中常见。
当前,从研究范式的特征和视角来划分,股票投资分析方法主要有如下三种:基本分析、技术分析、演化分析。这三种分析方法所依赖的理论基础、前提假设、研究范式、应用范围各不相同,在实际应用中它们既相互联系,又有重要区别。其中基本分析属于一般经济学范式,技术分析属于数理或牛顿范式,演化分析属于生物学或达尔文范式;基本分析主要应用于投资标的物的选择上,技术分析和演化分析则主要应用于具体操作的时机和空间判断上,作为提高股票投资分析有效性和可靠性的重要手段。
D. 房子股市下跌多少算赔
赔多少要看你的股票跌多少,跌停可能是百分之5,百分之10或者百分之20。如果一直跌理论上不会变为0,只是无尽接近0,所以如果赔了,最多就是一万块赔完了。
拓展资料:
股票投资风险是股票投资者购进股票后遭遇股价下跌损失的可能性。一般可理解为卖出价格低于预期价格的差距,或实获股息未能达到预定的标准。股票市场交易价格往往一日数十变,价涨即获利,价跌即亏损,有时连涨数日获利丰厚,有时连跌数日损失惨重。
股票市场上的机遇和风险总是同时存在、同时发展、同时减退的,投资者在期望获取高额收益的同时,必然要承担相应巨大的风险。股票投资风险,可分为总体风险和个别风险两大类。
人类对于股市运作逻辑的认知,是一个极具挑战性的世界级难题,这也是股票投资风险的根源所在。迄今为止,尚没有任何一种理论和方法能够令人信服并且经得起时间检验——2013年,瑞典皇家科学院在授予罗伯特·席勒等人该年度诺贝尔经济学奖时指出:
几乎没什么方法能准确预测未来几天或几周股市债市的走向,但也许可以通过研究对三年以上的价格进行预测。
当前,从研究范式的特征和视角来划分,股票投资分析方法主要有如下三种:基本分析、技术分析、演化分析。在实际应用中,它们既相互联系,又有重要区别。具体内容如下:
(1)、基本分析(Fundamental Analysis ):以企业内在价值作为主要研究对象,从决定企业价值和影响股票价格的宏观经济形势、行业发展前景、企业经营状况等方面入手(一般经济学范式),进行详尽分析以大概测算上市公司的投资价值和安全边际,并与当前的股票价格进行比较,形成相应的投资建议。基本分析认为股价波动轨迹不可能被准确预测,而只能在有足够安全边际的情况下“买入并长期持有”,在安全边际消失后卖出。
(2)、技术分析(Technical Analysis):以股价涨跌的直观行为表现作为主要研究对象,以预测股价波动形态和趋势为主要目的,从股价变化的K线图表与技术指标入手(数理或牛顿范式),对股市波动规律进行分析的方法总和。技术分析有三个颇具争议的前提假设,即市场行为包容消化一切;价格以趋势方式波动;历史会重演。国内比较流行的技术分析方法包括道氏理论、波浪理论、江恩理论等。
(3)、演化分析(Evolutionary Analysis):以股市波动的生命运动内在属性作为主要研究对象,从股市的代谢性、趋利性、适应性、可塑性、应激性、变异性、节律性等方面入手(生物学或达尔文范式),对市场波动方向与空间进行动态跟踪研究,为股票交易决策提供机会和风险评估的方法总和。
演化分析从股市波动的本质属性出发,认为股市波动的各种复杂因果关系或者现象,都可以从生命运动的基本原理中,找到它们之间的逻辑关系及合理解释,并为构建科学合理的博弈决策框架,提供令人信服的依据。
E. 跪求一篇有关投资组合风险的大学本科毕业论文,包括开题报告任务书等~
需要就联系 [email protected]
投资组合规模风险和收益的关系研究
内容摘要:现代投资组合理论认为不同风险资产进行组合后,在保证投资收益的基础上可以有效地降低组合的风险。本文以沪市上市公司为例,根据上市公司2001-2005年近五年来的市场表现,分析投资组合规模、风险和收益的关系。通过研究发现:投资组合存在适度组合规模,组合规模过大会出现过度组合的问题;组合规模的增加能够有效地降低非系统性风险,但在提高组合收益上效果并不明显。
关键词:投资组合 投资风险 投资收益 实证研究
在证券市场上,无论是机构投资者还是个人投资者,都面临着如何提高证券投资收益和降低证券投资风险的问题。根据现代投资组合理论,投资者进行证券投资时,可以在两个层面上进行投资组合,第一个层面是对证券市场上已有的证券投资品种之间进行投资组合,第二个层面是对同一投资品种内部的产品进行投资组合。
投资者通过两个层面上的投资组合可以在保证收益的基础上,大大降低证券投资的风险。对机构投资者而言,由于其资金实力比较雄厚,能够保证其在两个层面上都可以进行广泛地投资组合,从而达到提高收益和降低风险的目标。
由于目前能够在证券市场中进行交易的投资品种并不是很多,而且每一个进行交易的投资品种有其特殊的发行主体和交易主体,其市场功能和定位也完全不同,其在证券市场的存在是为了满足不同投资者不同的投资需求,其所表现出来的风险与收益的关系也比较匹配,故在第一个层面中通常不存在投资组合规模问题。机构投资者通常会在第二个层面上面临投资组合的规模问题,虽然通过进行广泛的投资组合可以使投资风险降到很低的水平,但由于组合规模过大投资的对象过度分散也会降低投资组合的收益。这主要是因为维持数目众多的证券组合需要较高的交易费用、管理费用和信息搜寻费用,而且数目众多的证券组合中可能包含一些无法及时得到相关信息且收益较低的证券,从而无法及时有效地进行投资组合调整。对个人投资者而言,由于其资金和精力有限,在两个层面上都无法进行广泛地投资组合,只能选择较小的投资组合,通常把资金集中投资于某一投资品种,由于投资组合的过度集中又使其面临巨大的投资风险。个人投资者也需要在有限的条件下进行适当的投资组合以规避投资风险。
因此,证券投资组合的规模既不能过度分散也不能过度集中。投资组合规模、风险和收益之间存在最优化配置问题,即一个合理的组合规模可以降低投资风险,保证稳定的投资收益。根据中国证券市场的不同交易品种的实际交易情况,证券投资组合的规模问题一般只表现在股票投资上,证券投资组合的规模问题基本上可以用股票投资组合的规模问题来反映。
投资组合规模与风险关系研究综述
从20世纪60年代中后期开始出现了一批对投资组合规模与风险关系研究的经典文章,成为当时投资组合理论研究的一个热点,这些研究主要是围绕简单分散化所构造的组合即简单随机等权组合来展开的,但都有其各自不同的侧重点。具体来说,这些研究主要集中在以下三个方面:一是研究一国证券投资组合规模与风险的关系;二是从数理角度来推导组合规模和风险之间的模型;三是研究跨国证券投资组合的规模与风险的关系。相对来讲,研究一国证券投资组合规模与风险的关系更具有现实意义,大多数的研究也主要围绕一国投资组合规模与风险的实际情况进行研究,从中找出投资组合规模与风险的相互关系。
国外学者研究综述
埃文斯和阿彻第一次从实证角度验证了组合规模和风险之间的关系。他们以1958-1967年标准普尔指数中的470种股票为样本,以半年收益率为指标,采用非回置式抽样方法,分别构建了60个“1种证券的组合”、60个“2种证券的组合”……60个“40种证券的组合”。在计算各个组合的标准差后,再分别计算不同规模组合标准差的平均值,并标准差的平均值代表组合的风险。
研究发现:当组合规模超过8种证券时,为了显着(0.05水平)降低组合的平均标准差,需要大规模地增加组合的规模。t检验的结果表明,对于只含2种证券的组合,为了显着降低组合的平均标准差,必须增加1种证券,对于规模为8的组合,必须增加5种证券,而规模大于19的组合,至少必须增加40种证券,才能取得显着的降低效果。组合规模与组合的分散水平存在一个相对稳定的关系,组合标准差的平均值随着组合规模的扩大而迅速下降,当组合规模达到10种证券时,组合标准差的平均值接近0.12,并趋于稳定,再扩大组合规模,组合标准差的平均值几乎不再下降。
费希尔和洛里(1970)对比研究了简单随机等权组合和跨行业证券组合,研究发现:当组合规模超过8种股票时,组合的收益和风险开始趋于稳定,因此增加组合中的股票数不能再有效地降低非系统性风险;在同等组合规模上,跨行业证券组合的收益与风险和简单随机等权组合无显着的差别,因此,跨行业证券组合不能取得更好的分散非系统性风险的效果;市场整体的分散程度只有“一种股票”组合的50%-75%,即市场整体的风险只是“一种股票”组合风险的50%-75%。持有2种股票可降低非系统性风险的40%,当持有的股票数分别为8、16、32、128种时,分别可降低非系统性风险的80%、90%、95%、99%。
国内学者研究综述
国内学者对投资组合理论在我国证券市场中的应用也作了大量的研究。这些研究主要集中在研究投资组合规模与组合风险关系上,通过构造简单随机等权组合来观察组合风险随组合规模扩大而变化的情况,其中具有代表性的观点有:施东晖(1996)以1993年4月-1996年5月上海证交所的50家股票为样本,以双周收益率为指标,采用简单随机等权组合构造50个“n种股票组合”(n=1,2,…,50)来推断股票组合分散风险的能力,得出“投资多元化只能分散掉大约20%的风险,降低风险的效果极其有限”的结论。
吴世农和韦绍永(1998)以1996年5月-1996年12月期间上证30指数的股票为样本,以周收益率为指标,采用简单随机等权组合方法,构成了30组股票种数从1~30的组合,以此研究上海股市投资组合规模和风险的关系,结果表明,上海股市适度的组合规模为21~30种股票,该组合规模可以减少大约25%的总风险,但是,他们更重要的发现是这种组合降低风险的程度和趋势是非常不稳定的。
李善民和徐沛(2000)分别以深市、沪市以及深沪整体市场为目标研究市场,计算各个市场组合规模与风险的关系,得出“投资者实现投资多元化,持有的股票总数大约可以控制在20种以内,这一适度规模可以使总风险减少约50%”的结论。
顾岚等人(2001)以深沪114种股票为样本,以日收益率为指标,分别研究了不同年份、不同行业的等权组合规模的情况,得出“不同年份的组合方差相差很大,不同行业对于不同组合数目方差的降低有明显差别”的结论,此外他们还对比了马科维茨组合和简单等权组合,发现在方差的减少效果上,马科维茨组合优于简单等权组合,并且马科维茨组合的规模小于简单等权组合。
高淑东(2005)概括了证券组合中各证券预期收益之间的相关程度与风险分散化之间的关系,通过分析指出:其一,证券投资组合中各单个证券预期收益存在着正相关时,如属完全正相关,则这些证券的组合不会产生任何的风险分散效应,它们之间正相关的程度越小,则其组合可产生的分散效应越大;其二,当证券投资组合中各单个证券预期收益存在着负相关时,如属完全负相关,这些证券的组合可使其总体风险趋近于零(即可使其中单个证券的风险全部分散掉),它们之间负相关的程度越小,则其组合可产生的风险分散效应也越小;其三,当证券投资组合中各单个证券预期收益之间相关程度为零(处于正相关和负相关的分界点)时,这些证券组合可产生的分散效应,将比具有负相关时为小,但比具有正相关时为大。
黄宣武(2005)利用概率统计原理对证券的投资组合能减轻所遇的风险作了讨论,并介绍了如何选择投资组合可使所遇风险达到最小。实证表明:证券组合确实可以很好的降低证券投资风险,但也必须注意,证券组合的资产数量并不是越多越好,而是要恰到好处,一般在15种到25种之间,可以达到证券组合的效能最大化。
杨继平,张力健(2005)应用上证50指数中的36只股票近三年的月收益率数据对沪市投资组合规模与风险分散的关系进行实证分析,并讨论股票投资组合适度规模的确定问题。 通过实证研究得到以下结论:其一,上海股市的投资风险结构有所完善,但投资风险的绝大部分依然体现在宏观的系统风险方面,而较少体现在反映上市公司的经营状况等非系统因素的非系统风险方面,从而造成投资者无法以股票表现的好坏来评价公司的经营业绩;其二,上海股市个股表现优劣相差悬殊,投资者不可只为追求组合非系统风险的分散,而盲目增加组合规模,进行理性的筛选是必要的。
本文在上述研究的基础上,通过采用上海证券市场最新的数据,研究在现有的市场情况下,投资组合规模、投资风险和投资收益之间的关系。希望通过研究,能够为投资者进行证券投资组合提供理论和实践的参考。
实证研究
研究样本及数据
本文以2001年1月1日以前已经在上海证券交易所上市的公司为样本,一共为562家上市公司,再剔除资料不全的上市公司共有352家上市公司纳入我们的研究范围。本文以周收益率为研究对象,研究上述公司在2001年-2005年时间段内进行投资组合的市场表现。数据主要来源于爱建证券网上交易系统,还有部分数据来源于上海证券交易所网站。
投资组合的构造方法
本文采用非回置式随机抽样方法从352家上市公司选择股票,并按照简单等权的方法进行1-30种股票的投资组合。这样进行投资组合的构造,主要是考虑计算比较方便,并且能够说明组合从1只股票增加到30只股票每增加1只股票,对组合投资收益和风险的影响。为了减少一次抽样所带来的误差,本文重复进行了30次这样的随机抽样。通过计算同种规模的投资组合的股票收益率和标准差,得到每种组合规模组合收益率和标准差的平均值,作为该种组合规模的收益率和风险值。
投资组合收益率和风险的计算方法
本文采用对数收益率的方法来计算投资组合的周收益率,由于部分上市公司在整个研究期内发生过分红派息的情况,为便于不同时期的数据进行比较,对上市公司的周收盘价进行了复权处理,这样上市公司的周收益率可以表示为:
Rp=LN (Pt/Pt-1),投资组合风险用组合的标准差σp表示。
投资组合的规模、风险和收益的关系
本文以2001年1月5日至2005年12月30日(共248周)经过复权处理的股票周收盘价作为计算依据,按照投资组合的构造方法进行投资组合,并根据投资组合收益率和风险的计算方法,计算出各种不同组合规模的收益率和风险。同时,为了便于比较,以同时期的上证指数的周收盘指数来计算上海证券市场的系统风险和市场收益率。这样组合的非系统风险就可以通过计算组合的平均标准差与上证指数的标准差而得到。经过计算得出如下结果(见表1)。
投资组合规模与风险的关系 从表1中的数据可以看出:当组合的规模从1种增加到2种时,组合非系统风险下降了0.74%,当组合的规模从2种增加到5种时,组合非系统风险下降了0.42%,当组合的规模从5种增加到11种时,组合的非系统风险下降了0.26%,当组合的规模从11种增加到17种时,组合的非系统风险下降了0.13%,当组合的规模从17种增加到23种时,组合的非系统风险下降了0.03%,当组合的规模从23种增加到30种时,组合的非系统风险下降了0.01%。从投资组合的非系统性风险下降的情况来看,当投资组合的规模达到17时,非系统风险趋于稳定,达到0.56%。就组合的总风险而言,投资组合的规模达到17时,组合风险也趋于稳定,达到3.34%。虽然继续增加投资组合规模能够降低组合的风险,但当组合数增加到30种时,非系统风险仍有0.52%,组合规模增加了13种,风险仅降低了0.04%,组合的效果大大降低。
从整体上来看,在上海证券市场上随着投资组合规模地不断扩大,投资组合的风险会出现逐步下降的趋势,而且风险的下降速度也是逐渐减少的,最终会趋于稳定。根据投资组合理论,投资组合可以分散组合的非系统风险,但无法分散系统风险,投资组合风险的下降主要是由于非系统风险的下降引起的。因此,计算非系统风险下降额这个指标,能够很清楚地反映投资组合规模的扩大对组合风险的真实影响。
组合规模与风险的回归模型 根据上述的实证检验,可以看出投资组合的规模与组合的风险之间存在相关关系,即投资组合规模的增加会减少组合的风险,但这种关系不是严格的线性关系,埃文斯和阿彻认为投资组合规模与组合风险的关系是:
Yi=A+B/Ni
其中:Ni为组合的规模(i=1,2,3,∧,n);Yi为不同组合规模的σ。本文用表1中的组合风险和组合规模的实际数据对上述模型进行检验,得到如下检验结果:
Yi=3.2747+1.7345/Ni(240.23)(29.49)
R2=0.9688 R2=0.9677 F=870.04
回归模型拟合的非常好,拟合优度为0.9688,调整后的拟合优度为0.9677,整体的F检验也非常显着,各个参数的t检验(括号内的数值)也非常显着,这也说明投资组合规模与组合风险之间确实存在显着的相关关系,我们可以用上述模型对投资组合的风险进行合理的估计。由于组合中存在系统性风险,因此,当N趋向于无穷大时,组合的风险并不趋向于0。
再用表1中组合非系统风险和组合规模的实际数据对上述模型进行检验,得到如下检验结果:
Yi=0.4947+1.7345/Ni(36.29)(29.49)
R2=0.9688 R2=0.9677 F=870.04
这个模型与前一个模型的结果基本相同,只是方程的常数项有所不同,各个参数的t检验(括号内的数值)也非常显着,拟合的结果和上一个模型是一致的,这也充分说明随着投资组合规模的增加,投资组合只能降低组合的非系统风险,而无法降低系统风险。而这个模型之间的差额就是投资组合所面临的系统风险。
组合规模与收益的关系 从表1中的数据中可以得出:当组合规模从1种增加到2种时,组合的收益上升了0.01%,当组合规模从2种增加到5种时,组合的收益上升了0.02%,当组合规模从5种增加到11种时,组合的收益上升了0.02%,当组合规模从11种增加到17种时,组合的收益上升了0.02%,当组合规模从17种增加到23种时,组合的收益上升了0.01%,当组合规模从23种增加到30种时,组合的收益上升了0.01%。当组合规模达到30时,组合的收益为-0.44%,与市场组合-0.23%的收益相差0.21%。
根据投资组合理论,组合的收益是组合中各风险资产收益的线性组合,投资组合数的增加通常并不能增加组合的收益。从实证结果来看,在上海证券市场上随着组合规模的增加,组合的收益出现了有规律的上升趋势,但收益的这种上升程度并不是很高,当组合数增加到一定程度后,组合的收益的变动范围基本上保持在一个很小的范围内,即使组合的规模达到很大,与市场组合的收益差距依然很大。因此,投资组合规模的增加并不是增加组合收益的主要途径。
结论
在2001年至2005年期间,上海证券市场上适度的投资组合规模数为17种股票。这种投资组合规模可以降低投资组合总风险1.55%,降低投资组合的非系统风险的比例为73.46%。
投资者可以通过增加投资组合中的股票数来降低组合的非系统性风险,但不能降低系统性风险,组合风险在组合规模达到一定程度时将趋于稳定。
简单的投资组合并不能很好地提高组合的收益水平,投资组合规模存在一定的有效区域,当组合规模超过该区域时将导致组合的过度分散化。组合的过度分散化会产生各种交易费用及相关的管理成本,这样势必会降低整个投资组合的投资收益。
参考文献:
1.吴世农,韦绍永.上海股市投资组合规模和风险关系的实证研究[J].经济研究,1998(4)
2.李善民,徐沛.Markowitz投资组合理论模型应用研究[J].经济科学,2000(1)
3.顾岚,薛继锐,罗立禹,徐悦.中国股市的投资组合分析[J].数理统计与管理,2001(5)
4.高淑东.证券投资组合风险的分散化[J].集团经济研究,2005(2)
5.黄宣武.现代投资组合风险与收益的评价[J].甘肃科技,2005(6)
F. 模糊数学聚类分析
模糊聚类是采用模糊数学方法,依据客观事物间的特征、亲疏程度和相似性,通过建立模糊相似关系对客观事物进行分类的一门多元技术。
其算法主要有传递闭包法、动态直接聚类法和最大树法等,其中动态直接聚类法计算量最少。
在实际应用中必须经过数据预处理、特别是归一化等处理步骤,选取合适的模糊关系建立模糊相似矩阵,然后进行聚类和模式识别。
糊聚类分析在学生素质评定中的应用
学生素质的评定工作,对学校的发展具有重要的作用。
本文就学生素质从德、智、体、能、劳5个方面作出评价。
首先,对得到的数据进行规格化;接着,构造模糊相似矩阵;最后,利用编网法对学生素质的评定进行聚类分析,该方法简单易懂且计算量小达到了预期的效果。
模糊数学在畜禽血液蛋白多态性聚类分析中的应用
我国动植叨蛋白多态性的研究进展迅速,国内外有关这方面的报道越来越多.但这一研究已有近百年的历史,真正发展是近=十年的事.我国起步较晚,近年的研究和应用较快,现已推向地,县级阶段,可见这一研究和应用的普及在我国为时不远1.西南民族学院2.西昌农业专科学校3.面昌市畜牧局了..本研究表明我国畜牧兽医工作进入了分子水平阶段.由于蛋白多态性的研究和方法简便,节时省钱,基层单位均可应用.但此法的关键问题是聚类分析.聚类分析的方法很多,如遗传距离聚类分析中的最短遗传距离聚类分析,类平均法聚类分析再如遗传相似系数分析中我们见有矩阵法,但在畜禽蛋白多态性聚类分析上,均无统一的具体分析方法.为此,我们根据模糊数学 *** 论的原理,对遗传相似系数进行聚类分析,现介绍出来,供同行们应用时参考.模糊数学是研究和处理一些模糊现象的数学.但不是把数学变成模糊的东酉,而是在许多控制过程中,用模糊的手段达到精确的目的.在畜禽蛋白多态性研究中,遗传相似系数也是聚类分析中常用的分析指标.
模糊数学聚类分析在鲤鱼杂交种后代性状研究中的应用
杂交鲤与亲本相似,用数学语言来说是存在模糊性问题。
采用模糊数学聚类分析法,首先建立模糊相似矩阵,得到鲤鱼生长性状聚类分类图谱,最后得到三杂交鲤、荷元鲤等F1代与母本相似比父本大的结论。
这在鱼类杂交选育理论与生产上有一定意义